Discussion on methodology in research of groundwater flow system: A review of research on groundwater flow systems at CUG-Wuhan
-
摘要: 地球系统科学和地下水流系统理论的出现,标志着水文地质学进入新的发展时期。地下水流系统理论已成为水文地质学的新范式,其产生和发展,从方法论上为地下水问题的研究提供了新的启示。自20世纪80年代初以来,中国地质大学(武汉)地下水流系统组持续开展了地下水流系统理论与应用研究。试图从方法论的角度回顾与总结这些研究成果。地下水问题受多因素影响,研究应以"目标与问题导向相结合",靶向准确,才能在信息浩渺中不失方向,向着目标前行;研究时应采用"假设演绎法",先依据已有认识和资料演绎出应有的现象,再有目的地观察和寻求证据,或修改假设继续求证,直到假设被证实或证伪;演绎寻证过程,可以采用"控制性实验""信息提取与组织""多学科方法与手段融合"等技术方法。实例分析证实,控制性模拟实验使我们得出了地下水流模式的新认识;采用多通道的信息提取、加工和组织,构建地下水流系统模式,能够有效解决各类工程中的应用问题;多学科与手段融合、各种信息相互验证,提高了结果的可信度。以实例研究为基础,从研究方法上的总结能为正确认识和理解地下水流系统理论、推进新理论和新思路在水文地质研究中的应用提供参考。Abstract: The emergence of earth system science and groundwater flow system theory marked the beginning of a new era of hydrogeology.The theory of groundwater flow systems has become a new paradigm of hydrogeology, and its development has provided new enlightenment in methodology for groundwater research.Since the early 1980s, the Groundwater Flow System Group of China University of Geosciences(Wuhan) has continued to carry out theoretical and applied research on groundwater flow systems.In this paper, we attempt to review and summarize these research from a methodological point of view.Groundwater problems are affected by many factors.The research should be based on the "combination of goal and problem orientation".Only when the target is accurate, can one move towards the goal without losing direction in the vast amount of information.The "hypothetical deduction method" adopted in the research, first deduces the expected phenomenon based on the existing knowledge and data, then observes and seek evidence purposefully, and then revises the hypothesis to continue the verification until the hypothesis is confirmed or falsified.In the process of deductive evidence-seeking, technical methods such as "controlled experiment", "information extraction and organization", and "integration of multidisciplinary methods and means" can be used.The case analysis confirmed that the controlled simulation experiment has enabled us to obtain a new understanding of the groundwater flow patterns; the use of multi-channel information extraction, processing and organization to build a groundwater flow system patterns can effectively solve practical problems in various projects; and the integration of multiple disciplines and means, and the mutual verification of various information have improved the credibility of the results.Based on the case studies, we summarized the methodologies in order to provide a reference for correctly understanding the theory of groundwater flow systems and promote the application of new theories and new ideas in hydrogeological research.
-
图 4 地下水流系统物理模拟结果(引自文献[16])
Figure 4. Physical simulation results of groundwater flow systems in sand box
图 7 砂箱实验得出不同入渗强度的地下水流系统(引自文献[16])
a.河谷S1、S2、S3均为实际势汇; b.河谷S2、S3为潜在势汇
Figure 7. Groundwater flow patterns under different infiltration intensities resulted from sandbox experiments
图 9 高岚河流域岩溶水系统划分(引自文献[41])
Figure 9. Division of karst water system in Gaolan River Basin
图 10 香溪河流域古夫宽缓向斜区多级岩溶水流系统概念模型图(引自文献[41])
Figure 10. Schematic conceptual model of hierarchical karst water flow system in the wide syncline area of Gufu, Xiangxi River Basin
图 11 末次盛冰期以来河北平原地下水流系统演变示意剖图(引自文献[48])
a.18~15 ka(阶段Ⅰ);b.15~12 ka(阶段Ⅱ);c.距今2.5 ka~现今(阶段Ⅲ);实线表示活动的水流系统,虚线表示衰亡的水流系统;中部平原局部水流系统及滨海平原水流系统,资料不足,未予表示。1.基岩;2.第四系;3.盆地底界;4.咸水(ρ(TDS)>2 g/L);5.山前平原局部水流系统流线;6.区域水流系统流线;7.中部平原早期中间水流系统流线;8.中部平原晚期中间水流系统流线;9.地下水流域分界线;10.山前平原局部水流系统流域;11.区域水流系统流域;12.中部平原早期中间水流系统流域;13.中部平原晚期中间水流系统流域
Figure 11. Schematic representation of evolution of ground-water flow systems in Hebei Plain since the Last Glacial Maximum
图 12 不同新构造运动条件下河间地块岩溶发育模式(引自文献[54])
Figure 12. Development patterns of karst under different neotectonic movement
-
[1] 蔡祖煌. 问题解答[J]. 水文地质工程地质, 1959(10): 39. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG195910018.htmCai Z H. Problem solving[J]. Hydrogeology and Engineering Geology, 1959(10): 39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG195910018.htm [2] 常士骠, 施鑫源, 王瑞玉. 略论地下水资源评价的若干问题[J]. 工程勘察, 1980(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198004016.htmChang S B, Shi X Y, Wang R Y. On some problems of groundwater resource evaluation[J]. Geotechnical Investigation & Surveying, 1980(4): 56-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198004016.htm [3] Tóth J. A theoretical analysis of groundwater flow in small drainage basin[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795 [4] Tóth J. Cross-formational gravity-flow of groundwater: a mechanism of the transport and accumulation of petroleum(the generalized hydraulic theory of petroleum migration)[J]. Problem of Petroleum Migration: AAPG Studies in Geology, 1980, 10: 121-167. [5] Tóth J. Groundwater as a geological agent: An overview of the cause, process, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176 [6] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第6版. 北京: 地质出版社, 2011.Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 6th Edition. Beijing: Geological Publishing House, 2011(in Chinese). [7] 国土资源部地质环境司, 中国地质调查局. 地下水耕耘者(一)[M]. 北京: 中国大地出版社, 2003.Geological Environment Department of Ministry of Land and Resources, China Geological Survey. The ploughman of groundwater(one)[J]. Beijing: China Land Press, 2003(in Chinese). [8] 陈梦熊. 荷兰英格伦教授来华讲座[J]. 水文地质工程地质, 1984(2): 43.Chen M X. A lecture in China from Professor Engelen from Netherlands[J]. Hydrogeology and Engineering Geology, 1984(2): 43(in Chinese). [9] 薛凤海. 我国首届"地下水系统及地下水资源助教进修班"在武汉地院结业[J]. 地下水, 1985(3): 66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU198503034.htmXue F H. The first assistant training course of groundwater system and groundwater resources in China was graduated from Hebei Institute of Geology[J]. Groundwater, 1985(3): 66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU198503034.htm [10] Van Elburg H, Engelen G B, Hemker C J. FLOWNET, een computer programma voor de modellering van het net van stroomlijnen en equipotentiaallijnen, de weergave van tijdstappen en animatie van het stromingsbeeld in een tweedimensionale verticale doorsnede van de ondergrond(FLOWNET, a computer programme to model equipotential-and streamlines in a 2-D cross-section of the subsoil). User Manual[R]. Amsterdam: Institute for Earth Sciences, Free University, Amsterdam, 1989. [11] 梁杏. 盆地地下水流系统模拟分析及其应用[D]. 武汉: 中国地质大学(武汉), 2011.Liang X. Simulation analysis and application of groundwater flow system in the basin[D]. Wuhan: China University of Geosciences(Wuhan), 2011(in Chinese). [12] 王大纯, 张人权, 史毅红, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995.Wang D C, Zhang R Q, Shi Y H, et al. Fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 1995(in Chinese). [13] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 7th Edition. Beijing: Geological Publishing House, 2018(in Chinese). [14] 梁杏, 沈仲智, 刘宇, 等. 一种多级次地下水流系统演示仪: CN2008200667265[P]. 2008.Liang X, Shen Z Z, Liu Y, et al. A demo instrument of multi-hierarchical groundwater flow system: CN2008200667265[P]. 2008(in Chinese). [15] 梁杏, 郭会荣. 水文地质学基础实验实习教程[M]. 北京: 地质出版社, 2009.Liang X, Guo H R. Experimental and practical textbook of fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 2009(in Chinese). [16] 刘彦, 梁杏, 权董杰, 等. 改变入渗强度的地下水流模式实验[J]. 地学前缘, 2010, 17(6): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htmLiu Y, Liang X, Quan D J, et al. Experiments of groundwater flow patterns under changes of infiltration intensity[J]. Earth Science Frontiers, 2010, 17(6): 111-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm [17] 张人权, 梁杏, 靳孟贵, 等. 当代水文地质学发展趋势与对策[J]. 水文地质工程地质, 2005(1): 51-56. doi: 10.3969/j.issn.1000-3665.2005.01.013Zhang R Q, Liang X, Jin M G, et al. The trends in contemporary hydrogeology[J]. Hydrogeology and Engineering Geology, 2005(1): 51-56(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2005.01.013 [18] Zhang R Q, Liang X, Jin M G. Tóthian theory is the paradigm of modern hydrogeology[C]//Anon. International Symposium on Hierarchical Flow Systems in Karst Regions. 4-7 September 2013, Budapest, Hungary. [s. n. ]: [S. l. ], 2013. [19] 中国地质调查局. 水文地质手册[M]. 第2版. 北京: 地质出版社, 2012.China Geological Survey. Handbook of hydrogeology[M]. 2th Edition: Beijing: Geological Publishing House, 2012(in Chinese). [20] 梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.Liang X, Zhang R Q, Jin M G. Groundwater flow systems: Theory, application and investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese). [21] 自然资源部中国地质调查局. 水文地质调查技术要求(1: 50000)DD2019-03)[R], 2019. China Geological Survey of Ministry of Natural Resources. Technical requirement for hydrogeological survey(1: 50000)(DD2019-03), 2019(in Chinese). [22] Engelen G B, Jones G P. Developments in the analysis of groundwater flow systems[M]. [S. l. ]: IAHS Publication, 1986. [23] Freeze R A, Witherspoon P A. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variations[J]. Water Resources Research, 1967, 3(2): 623-634. doi: 10.1029/WR003i002p00623 [24] Engelen G B, Kloosterman F H. Hydrological systems analysis: Methods and applications[M]. Dordrecht: Kluwer Academic Publishers, 1996. [25] Zijl W. Scale aspects of groundwater flow and transport systems[J]. Hydrogeology Journal, 1999, 7(1): 139-150. doi: 10.1007/s100400050185 [26] Tóth J. Gravitational systems of groundwater: theory, evaluation, utilization[M]. Cambridge: Cambridge University Press, 2009, 297. [27] Jiang X W, Wan L, Wang X S, et al. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow[J]. Geophysical Research Letters, 2009, 36(24): L24402. doi: 10.1029/2009GL041251 [28] Liang X, Liu Y, Jin M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573. doi: 10.1002/hyp.7758 [29] 孙蓉琳, 刘延锋, 潘欢迎, 等. 地下水流系统理论砂箱实验装置的研制与应用[J]. 实验室研究与探索, 2021, 40(7): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY202107049.htmSun R L, Liu Y F, Pan H Y, et al. Development and application of a box experiment devices for groundwater flow system theory[J]. Research and Exploration in Laboratory, 2021, 40(7): 220-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY202107049.htm [30] Liang X, Quan D J, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 2013, 27(24): 3475-3483. doi: 10.1002/hyp.9477 [31] 徐国宾. 河流动力学中的最小能耗率原理[C]//佚名. 第六届全国泥沙基本理论研究学术讨论会. 郑州: 黄河水利出版社, 2005.Xu G B. Principle of of minimum rate of energy dissipation in river dynamics[C]//Anon. The sixth National Symposium on Basic Theory of Sediment Theory. Zhengzhou: Yellow River Conservancy Press, 2005(in Chinese). [32] 张人权, 梁杏, 靳孟贵, 等. 多级次地下水流系统的最小能耗率原理初探[J]. 地质科技通报, 2022, 41(1): 11-18. doi: 10.19509/j.cnki.dzkq.2022.0002Zhang R Q, Liang X, Jin M G, et al. Preliminary discussion on the principle of minimum energy consumption rate controlling hierarchical groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 11-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0002 [33] 何世伟. 降雨条件下不同级次地下水流系统中溶质运移的非费克现象研究[D]. 武汉: 中国地质大学(武汉), 2020.He S W. Sandbox experiments and simulation studies of solute transport in hierarchically nested groundwater flow systems[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract). [34] 张人权, 周宏, 陈植华, 等. 山西郭庄泉岩溶水系统分析[J]. 地球科学: 中国地质大学学报, 1991, 16(1): 1-17. doi: 10.3321/j.issn:1000-2383.1991.01.002Zhang R Q, Zhou H, Chen Z H, et al. The systematic analysis of Guozhuang spring karst-water sysytem in Shanxi[J]. Earth Science: Journal of China University of Geosciences, 1991, 16(1): 1-17(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.1991.01.002 [35] 许绍倬, 王恒纯, 李勇, 等. 山西龙子祠泉岩溶水系统分析[J]. 地球科学: 中国地质大学学报, 1991, 16(1): 19-33. doi: 10.3321/j.issn:1000-2383.1991.01.003Xu S Z, Wang H C, Li Y, et al. The analysis of Longzici spring karst-water system in Shanxi[J]. Earth Science: Journal of China University Geosciences, 1991, 16(1): 19-33. doi: 10.3321/j.issn:1000-2383.1991.01.003 [36] Han D M, Xu H L, Liang X. GIS-based regionalization of a karst water system in Xishan Mountain area of Taiyuan Basin, north China[J]. Journal of Hydrology, 2006, 331: 459-470. doi: 10.1016/j.jhydrol.2006.05.037 [37] 罗明明, 肖天昀, 陈植华, 等. 香溪河岩溶流域几种岩溶水系统的地质结构特征[J]. 水文地质工程地质, 2014, 41(6): 13-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htmLuo M M, Xiao T Y, Chen Z H, et al. Geological structure characteristics of several karst water systems in the Xiangxi River Karst Basin[J]. Hydrogeology and Engineering Geology, 2014, 41(6): 13-19, 25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm [38] Luo M M, Chen Z H, Zhou H, et al. Identifying structure and function of karst aquifer system using multiple field methods in karst trough valley area, South China[J]. Environmental Earth Sciences, 2016, 75: 824. doi: 10.1007/s12665-016-5630-5 [39] Luo M M, Chen Z H, Criss R E, et al. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area, South China[J]. Hydrogeology Journal, 2016, 24(8): 1993-2002. doi: 10.1007/s10040-016-1462-3 [40] Luo M M, Chen Z H, Zhou H, et al. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes[J]. Hydrogeology Journal, 2018, 26(2): 629-639. doi: 10.1007/s10040-017-1664-3 [41] 罗明明, 周宏, 陈植华. 香溪河流域岩溶水循环规律[M]. 北京: 科学出版社, 2018.Luo M M, Zhou H, Chen Z H. Circulation law of karst water in Xiangxi River Basin[M]. Beijing: Science Press, 2018(in Chinese). [42] 王泽君, 周宏, 齐凌轩, 等. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例[J]. 地球科学, 2020, 45(12): 4512-4523. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012015.htmWang Z J, Zhou H, Qi L X, et al. Method for characterizing structure and hydrological response in karst water systems: A case study in Y-M system in Three Gorges Area[J]. Earth Science, 2020, 45(12): 4512-4523(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012015.htm [43] Liu W, Wang Z J, Chen Q L, et al. An interpretation of water recharge in karst trough zone as determined by high resolution tracer experiments in western Hubei, China[J]. Environmental Earth Sciences, 2020, 79: 357. doi: 10.1007/s12665-020-09056-6 [44] Wang Z J, Guo X L, Kuang Y, et al. Recharge sources and hydrogeochemical evolution of groundwater in a heterogeneous karst water system in Hubei Province, Central China[J]. Applied Geochemistry, 2022, 136: 105165. doi: 10.1016/j.apgeochem.2021.105165 [45] 张之淦, 张洪平, 孙继朝, 等. 河北平原第四系地下水年龄、水流系统及咸水成因初探: 石家庄至渤海湾同位素水文地质剖面研究[J]. 水文地质工程地质, 1987(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198704001.htmZhang Z G, Zhang H P, Sun J C, et al. Environmental isotope study related to goundwater age, flow system and saline water origin in Quaternary aquifer of Hebei Plain[J]. Hydrogeology and Engineering Geology, 1987(4): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198704001.htm [46] 张宗祜, 施德鸿, 任福弘, 等. 论华北平原第四系地下水系统之演化[J]. 中国科学: 地球科学, 1997, 27(2): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702012.htmZhang Z H, Shi D H, Ren F H, et al. Evolution of Quaternary groundwater system in north China Plain[J]. Science in China: Earth Science, 1997, 27(2): 168-173(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702012.htm [47] 陈宗宇, 皓洪强, 卫文, 等. 华北平原深层地下水的更新与资源属性[J]. 资源科学, 2009, 31(3): 388-393. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200903010.htmChen Z Y, Hao H Q, Wei W, et al. Groundwater renewal and characteristics in the deep confined aquifer in North China Plain[J]. Resources Science, 2009, 31(3): 388-393(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200903010.htm [48] 张人权, 梁杏, 靳孟贵. 末次盛冰期以来河北平原第四系地下水流系统的演变[J]. 地学前缘, 2013, 20(3): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htmZhang R Q, Liang X, Jin M G. The evolution of groundwater flow system in the Quaternary of Hebei Plain since the Last Glacial Maximum[J]. Earth Science Frontiers, 2013, 20(3): 217-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm [49] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103 [50] 龚再升, 王国纯. 中国近海油气资源潜力新认识[J]. 中国海上油气: 地质, 1997, 11(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199701000.htmGong Z S, Wang G C. New thoughts upon petroleum resources potential in offshore China[J]. China Offshore Oil and Gas: Geology, 1997, 11(1): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199701000.htm [51] Liang X, Jin M G, Wang X S, et al. Modeling of paleo-groundwater flow in the eastern Pearl River Mouth basin[C]//Anon. Proceeding of the International Symposium on Hydrogeology and the Environment. Beijing: China Environmental Science Press, 2000. [52] Tóth J. Exploration for reservoir quality rock bodies by mapping and simulation of potentiometric surface anomalies[J]. Bulletin of Canadian Petroleum Geology, 1988, 36(4): 362-378. [53] Li J, Liang X, Jin M G, et al. Origin and evolution of aquitard porewater in the western coastal plain of Bohai Bay, China[J], Groundwater, 2017, 55(6): 917-925. [54] 张人权, 梁杏. 构造定量分析在岩溶水研究中的应用[J]. 地质科技情报, 1998, 17(增刊2): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.003.htmZhang R Q, Liang X. Application of quantitative structural analysis in karst-water research[J]. Geological Science and Technology Information, 1998, 17(S2): 16-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.003.htm [55] 梁杏, 韩庆之, 曾克峰, 等. 巨型水利枢纽工程岩溶水渗漏的系统分析方法[J]. 地质科技情报, 1998, 17(增刊2): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.000.htmLiang X, Han Q Z, Zeng K F, et al. System approaches to analyze reservoir leakage possibility for a huge key conservancy project in karst area[J]. Geological Science and Technology Information, 1998, 17(S2): 4-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.000.htm [56] 王大纯. 我国水文地质学的展望[J]. 地球科学: 中国地质大学学报, 1985, 10(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501001.htmWang D C. The prospect of the development of hydrogeology in China[J]. Earth Science: Journal of China University of Geosciences, 1985, 10(1): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501001.htm [57] 张人权. 关于水文地质学的一些思考[J]. 地质科技情报, 2002, 21(1): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201002.htmZhang R Q. Some thinking on development of hydrogeology[J]. Geological Science and Technology Information, 2002, 21(1): 3-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201002.htm