留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下水流系统研究中的方法论探讨: 以CUG-武汉地下水流系统研究为例

梁杏 张人权 罗明明 孙蓉琳 靳孟贵 周宏 蒋立群

梁杏, 张人权, 罗明明, 孙蓉琳, 靳孟贵, 周宏, 蒋立群. 地下水流系统研究中的方法论探讨: 以CUG-武汉地下水流系统研究为例[J]. 地质科技通报, 2022, 41(1): 30-42. doi: 10.19509/j.cnki.dzkq.2022.0005
引用本文: 梁杏, 张人权, 罗明明, 孙蓉琳, 靳孟贵, 周宏, 蒋立群. 地下水流系统研究中的方法论探讨: 以CUG-武汉地下水流系统研究为例[J]. 地质科技通报, 2022, 41(1): 30-42. doi: 10.19509/j.cnki.dzkq.2022.0005
Liang Xing, Zhang Renquan, Luo Mingming, Sun Ronglin, Jin Menggui, Zhou Hong, Jiang Liqun. Discussion on methodology in research of groundwater flow system: A review of research on groundwater flow systems at CUG-Wuhan[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 30-42. doi: 10.19509/j.cnki.dzkq.2022.0005
Citation: Liang Xing, Zhang Renquan, Luo Mingming, Sun Ronglin, Jin Menggui, Zhou Hong, Jiang Liqun. Discussion on methodology in research of groundwater flow system: A review of research on groundwater flow systems at CUG-Wuhan[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 30-42. doi: 10.19509/j.cnki.dzkq.2022.0005

地下水流系统研究中的方法论探讨: 以CUG-武汉地下水流系统研究为例

doi: 10.19509/j.cnki.dzkq.2022.0005
基金项目: 

国家自然科学基金项目 41772268

国家自然科学基金项目 42172276

国家自然科学基金项目 42172286

国家自然科学基金项目 41807199

详细信息
    作者简介:

    梁杏(1958-), 女, 教授, 博士生导师, 主要从事水文地质学教学、基础理论与工程应用研究工作。E-mail: xliang@cug.edu.cn

  • 中图分类号: P641

Discussion on methodology in research of groundwater flow system: A review of research on groundwater flow systems at CUG-Wuhan

  • 摘要: 地球系统科学和地下水流系统理论的出现,标志着水文地质学进入新的发展时期。地下水流系统理论已成为水文地质学的新范式,其产生和发展,从方法论上为地下水问题的研究提供了新的启示。自20世纪80年代初以来,中国地质大学(武汉)地下水流系统组持续开展了地下水流系统理论与应用研究。试图从方法论的角度回顾与总结这些研究成果。地下水问题受多因素影响,研究应以"目标与问题导向相结合",靶向准确,才能在信息浩渺中不失方向,向着目标前行;研究时应采用"假设演绎法",先依据已有认识和资料演绎出应有的现象,再有目的地观察和寻求证据,或修改假设继续求证,直到假设被证实或证伪;演绎寻证过程,可以采用"控制性实验""信息提取与组织""多学科方法与手段融合"等技术方法。实例分析证实,控制性模拟实验使我们得出了地下水流模式的新认识;采用多通道的信息提取、加工和组织,构建地下水流系统模式,能够有效解决各类工程中的应用问题;多学科与手段融合、各种信息相互验证,提高了结果的可信度。以实例研究为基础,从研究方法上的总结能为正确认识和理解地下水流系统理论、推进新理论和新思路在水文地质研究中的应用提供参考。

     

  • 图 1  地下水流系统在Web of Science核心合集数据库文献数的年度变化趋势(1982-2021年)

    注:Web of Science核心合集数据库始建于1982年,1982年以前的文献未查询

    Figure 1.  Annual change trend of the number of papers about the groundwater flow system in the core collection database of Web of Science since 1982

    图 2  地下水流系统CNKI(中国知网)文献数的年度变化趋势(1982-2021年)

    Figure 2.  Annual change trend of the number of documents about the groundwater flow system according to CNKI(China Knowledge Network)(1982-2021)

    图 3  地下水流系统在CNKI的中国发文机构分布(1982-2021年)

    Figure 3.  Distribution of China organizations publishing papers on groundwater flow systems according to CNKI(China Knowledge Network)(1982-2021)

    图 4  地下水流系统物理模拟结果(引自文献[16])

    Figure 4.  Physical simulation results of groundwater flow systems in sand box

    图 5  针对“库区岩溶渗漏”问题的假设演绎与信息提取的研究思路框架

    Figure 5.  Framework of research ideas for hypothetical deduction and information extraction for the karst leakage problem in a reservoir area

    图 6  多级次水流系统模式的模拟实验研究设计

    Figure 6.  Simulation experiment research design of multi-hierarchical flow system

    图 7  砂箱实验得出不同入渗强度的地下水流系统(引自文献[16])

    a.河谷S1、S2、S3均为实际势汇; b.河谷S2、S3为潜在势汇

    Figure 7.  Groundwater flow patterns under different infiltration intensities resulted from sandbox experiments

    图 8  山西郭庄泉及龙子祠泉岩溶水系统特征的圈划(引自文献[34-35])

    Figure 8.  Devision of Guozhuang spring and Longzici spring karst water systems, Shanxi

    图 9  高岚河流域岩溶水系统划分(引自文献[41])

    Figure 9.  Division of karst water system in Gaolan River Basin

    图 10  香溪河流域古夫宽缓向斜区多级岩溶水流系统概念模型图(引自文献[41])

    Figure 10.  Schematic conceptual model of hierarchical karst water flow system in the wide syncline area of Gufu, Xiangxi River Basin

    图 11  末次盛冰期以来河北平原地下水流系统演变示意剖图(引自文献[48])

    a.18~15 ka(阶段Ⅰ);b.15~12 ka(阶段Ⅱ);c.距今2.5 ka~现今(阶段Ⅲ);实线表示活动的水流系统,虚线表示衰亡的水流系统;中部平原局部水流系统及滨海平原水流系统,资料不足,未予表示。1.基岩;2.第四系;3.盆地底界;4.咸水(ρ(TDS)>2 g/L);5.山前平原局部水流系统流线;6.区域水流系统流线;7.中部平原早期中间水流系统流线;8.中部平原晚期中间水流系统流线;9.地下水流域分界线;10.山前平原局部水流系统流域;11.区域水流系统流域;12.中部平原早期中间水流系统流域;13.中部平原晚期中间水流系统流域

    Figure 11.  Schematic representation of evolution of ground-water flow systems in Hebei Plain since the Last Glacial Maximum

    图 12  不同新构造运动条件下河间地块岩溶发育模式(引自文献[54])

    Figure 12.  Development patterns of karst under different neotectonic movement

  • [1] 蔡祖煌. 问题解答[J]. 水文地质工程地质, 1959(10): 39. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG195910018.htm

    Cai Z H. Problem solving[J]. Hydrogeology and Engineering Geology, 1959(10): 39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG195910018.htm
    [2] 常士骠, 施鑫源, 王瑞玉. 略论地下水资源评价的若干问题[J]. 工程勘察, 1980(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198004016.htm

    Chang S B, Shi X Y, Wang R Y. On some problems of groundwater resource evaluation[J]. Geotechnical Investigation & Surveying, 1980(4): 56-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198004016.htm
    [3] Tóth J. A theoretical analysis of groundwater flow in small drainage basin[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [4] Tóth J. Cross-formational gravity-flow of groundwater: a mechanism of the transport and accumulation of petroleum(the generalized hydraulic theory of petroleum migration)[J]. Problem of Petroleum Migration: AAPG Studies in Geology, 1980, 10: 121-167.
    [5] Tóth J. Groundwater as a geological agent: An overview of the cause, process, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [6] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第6版. 北京: 地质出版社, 2011.

    Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 6th Edition. Beijing: Geological Publishing House, 2011(in Chinese).
    [7] 国土资源部地质环境司, 中国地质调查局. 地下水耕耘者(一)[M]. 北京: 中国大地出版社, 2003.

    Geological Environment Department of Ministry of Land and Resources, China Geological Survey. The ploughman of groundwater(one)[J]. Beijing: China Land Press, 2003(in Chinese).
    [8] 陈梦熊. 荷兰英格伦教授来华讲座[J]. 水文地质工程地质, 1984(2): 43.

    Chen M X. A lecture in China from Professor Engelen from Netherlands[J]. Hydrogeology and Engineering Geology, 1984(2): 43(in Chinese).
    [9] 薛凤海. 我国首届"地下水系统及地下水资源助教进修班"在武汉地院结业[J]. 地下水, 1985(3): 66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU198503034.htm

    Xue F H. The first assistant training course of groundwater system and groundwater resources in China was graduated from Hebei Institute of Geology[J]. Groundwater, 1985(3): 66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU198503034.htm
    [10] Van Elburg H, Engelen G B, Hemker C J. FLOWNET, een computer programma voor de modellering van het net van stroomlijnen en equipotentiaallijnen, de weergave van tijdstappen en animatie van het stromingsbeeld in een tweedimensionale verticale doorsnede van de ondergrond(FLOWNET, a computer programme to model equipotential-and streamlines in a 2-D cross-section of the subsoil). User Manual[R]. Amsterdam: Institute for Earth Sciences, Free University, Amsterdam, 1989.
    [11] 梁杏. 盆地地下水流系统模拟分析及其应用[D]. 武汉: 中国地质大学(武汉), 2011.

    Liang X. Simulation analysis and application of groundwater flow system in the basin[D]. Wuhan: China University of Geosciences(Wuhan), 2011(in Chinese).
    [12] 王大纯, 张人权, 史毅红, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995.

    Wang D C, Zhang R Q, Shi Y H, et al. Fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 1995(in Chinese).
    [13] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.

    Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 7th Edition. Beijing: Geological Publishing House, 2018(in Chinese).
    [14] 梁杏, 沈仲智, 刘宇, 等. 一种多级次地下水流系统演示仪: CN2008200667265[P]. 2008.

    Liang X, Shen Z Z, Liu Y, et al. A demo instrument of multi-hierarchical groundwater flow system: CN2008200667265[P]. 2008(in Chinese).
    [15] 梁杏, 郭会荣. 水文地质学基础实验实习教程[M]. 北京: 地质出版社, 2009.

    Liang X, Guo H R. Experimental and practical textbook of fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 2009(in Chinese).
    [16] 刘彦, 梁杏, 权董杰, 等. 改变入渗强度的地下水流模式实验[J]. 地学前缘, 2010, 17(6): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm

    Liu Y, Liang X, Quan D J, et al. Experiments of groundwater flow patterns under changes of infiltration intensity[J]. Earth Science Frontiers, 2010, 17(6): 111-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm
    [17] 张人权, 梁杏, 靳孟贵, 等. 当代水文地质学发展趋势与对策[J]. 水文地质工程地质, 2005(1): 51-56. doi: 10.3969/j.issn.1000-3665.2005.01.013

    Zhang R Q, Liang X, Jin M G, et al. The trends in contemporary hydrogeology[J]. Hydrogeology and Engineering Geology, 2005(1): 51-56(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2005.01.013
    [18] Zhang R Q, Liang X, Jin M G. Tóthian theory is the paradigm of modern hydrogeology[C]//Anon. International Symposium on Hierarchical Flow Systems in Karst Regions. 4-7 September 2013, Budapest, Hungary. [s. n. ]: [S. l. ], 2013.
    [19] 中国地质调查局. 水文地质手册[M]. 第2版. 北京: 地质出版社, 2012.

    China Geological Survey. Handbook of hydrogeology[M]. 2th Edition: Beijing: Geological Publishing House, 2012(in Chinese).
    [20] 梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Liang X, Zhang R Q, Jin M G. Groundwater flow systems: Theory, application and investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [21] 自然资源部中国地质调查局. 水文地质调查技术要求(1: 50000)

    DD2019-03)[R], 2019. China Geological Survey of Ministry of Natural Resources. Technical requirement for hydrogeological survey(1: 50000)(DD2019-03), 2019(in Chinese).
    [22] Engelen G B, Jones G P. Developments in the analysis of groundwater flow systems[M]. [S. l. ]: IAHS Publication, 1986.
    [23] Freeze R A, Witherspoon P A. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variations[J]. Water Resources Research, 1967, 3(2): 623-634. doi: 10.1029/WR003i002p00623
    [24] Engelen G B, Kloosterman F H. Hydrological systems analysis: Methods and applications[M]. Dordrecht: Kluwer Academic Publishers, 1996.
    [25] Zijl W. Scale aspects of groundwater flow and transport systems[J]. Hydrogeology Journal, 1999, 7(1): 139-150. doi: 10.1007/s100400050185
    [26] Tóth J. Gravitational systems of groundwater: theory, evaluation, utilization[M]. Cambridge: Cambridge University Press, 2009, 297.
    [27] Jiang X W, Wan L, Wang X S, et al. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow[J]. Geophysical Research Letters, 2009, 36(24): L24402. doi: 10.1029/2009GL041251
    [28] Liang X, Liu Y, Jin M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573. doi: 10.1002/hyp.7758
    [29] 孙蓉琳, 刘延锋, 潘欢迎, 等. 地下水流系统理论砂箱实验装置的研制与应用[J]. 实验室研究与探索, 2021, 40(7): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY202107049.htm

    Sun R L, Liu Y F, Pan H Y, et al. Development and application of a box experiment devices for groundwater flow system theory[J]. Research and Exploration in Laboratory, 2021, 40(7): 220-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY202107049.htm
    [30] Liang X, Quan D J, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 2013, 27(24): 3475-3483. doi: 10.1002/hyp.9477
    [31] 徐国宾. 河流动力学中的最小能耗率原理[C]//佚名. 第六届全国泥沙基本理论研究学术讨论会. 郑州: 黄河水利出版社, 2005.

    Xu G B. Principle of of minimum rate of energy dissipation in river dynamics[C]//Anon. The sixth National Symposium on Basic Theory of Sediment Theory. Zhengzhou: Yellow River Conservancy Press, 2005(in Chinese).
    [32] 张人权, 梁杏, 靳孟贵, 等. 多级次地下水流系统的最小能耗率原理初探[J]. 地质科技通报, 2022, 41(1): 11-18. doi: 10.19509/j.cnki.dzkq.2022.0002

    Zhang R Q, Liang X, Jin M G, et al. Preliminary discussion on the principle of minimum energy consumption rate controlling hierarchical groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 11-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0002
    [33] 何世伟. 降雨条件下不同级次地下水流系统中溶质运移的非费克现象研究[D]. 武汉: 中国地质大学(武汉), 2020.

    He S W. Sandbox experiments and simulation studies of solute transport in hierarchically nested groundwater flow systems[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
    [34] 张人权, 周宏, 陈植华, 等. 山西郭庄泉岩溶水系统分析[J]. 地球科学: 中国地质大学学报, 1991, 16(1): 1-17. doi: 10.3321/j.issn:1000-2383.1991.01.002

    Zhang R Q, Zhou H, Chen Z H, et al. The systematic analysis of Guozhuang spring karst-water sysytem in Shanxi[J]. Earth Science: Journal of China University of Geosciences, 1991, 16(1): 1-17(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.1991.01.002
    [35] 许绍倬, 王恒纯, 李勇, 等. 山西龙子祠泉岩溶水系统分析[J]. 地球科学: 中国地质大学学报, 1991, 16(1): 19-33. doi: 10.3321/j.issn:1000-2383.1991.01.003

    Xu S Z, Wang H C, Li Y, et al. The analysis of Longzici spring karst-water system in Shanxi[J]. Earth Science: Journal of China University Geosciences, 1991, 16(1): 19-33. doi: 10.3321/j.issn:1000-2383.1991.01.003
    [36] Han D M, Xu H L, Liang X. GIS-based regionalization of a karst water system in Xishan Mountain area of Taiyuan Basin, north China[J]. Journal of Hydrology, 2006, 331: 459-470. doi: 10.1016/j.jhydrol.2006.05.037
    [37] 罗明明, 肖天昀, 陈植华, 等. 香溪河岩溶流域几种岩溶水系统的地质结构特征[J]. 水文地质工程地质, 2014, 41(6): 13-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm

    Luo M M, Xiao T Y, Chen Z H, et al. Geological structure characteristics of several karst water systems in the Xiangxi River Karst Basin[J]. Hydrogeology and Engineering Geology, 2014, 41(6): 13-19, 25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm
    [38] Luo M M, Chen Z H, Zhou H, et al. Identifying structure and function of karst aquifer system using multiple field methods in karst trough valley area, South China[J]. Environmental Earth Sciences, 2016, 75: 824. doi: 10.1007/s12665-016-5630-5
    [39] Luo M M, Chen Z H, Criss R E, et al. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area, South China[J]. Hydrogeology Journal, 2016, 24(8): 1993-2002. doi: 10.1007/s10040-016-1462-3
    [40] Luo M M, Chen Z H, Zhou H, et al. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes[J]. Hydrogeology Journal, 2018, 26(2): 629-639. doi: 10.1007/s10040-017-1664-3
    [41] 罗明明, 周宏, 陈植华. 香溪河流域岩溶水循环规律[M]. 北京: 科学出版社, 2018.

    Luo M M, Zhou H, Chen Z H. Circulation law of karst water in Xiangxi River Basin[M]. Beijing: Science Press, 2018(in Chinese).
    [42] 王泽君, 周宏, 齐凌轩, 等. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例[J]. 地球科学, 2020, 45(12): 4512-4523. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012015.htm

    Wang Z J, Zhou H, Qi L X, et al. Method for characterizing structure and hydrological response in karst water systems: A case study in Y-M system in Three Gorges Area[J]. Earth Science, 2020, 45(12): 4512-4523(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012015.htm
    [43] Liu W, Wang Z J, Chen Q L, et al. An interpretation of water recharge in karst trough zone as determined by high resolution tracer experiments in western Hubei, China[J]. Environmental Earth Sciences, 2020, 79: 357. doi: 10.1007/s12665-020-09056-6
    [44] Wang Z J, Guo X L, Kuang Y, et al. Recharge sources and hydrogeochemical evolution of groundwater in a heterogeneous karst water system in Hubei Province, Central China[J]. Applied Geochemistry, 2022, 136: 105165. doi: 10.1016/j.apgeochem.2021.105165
    [45] 张之淦, 张洪平, 孙继朝, 等. 河北平原第四系地下水年龄、水流系统及咸水成因初探: 石家庄至渤海湾同位素水文地质剖面研究[J]. 水文地质工程地质, 1987(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198704001.htm

    Zhang Z G, Zhang H P, Sun J C, et al. Environmental isotope study related to goundwater age, flow system and saline water origin in Quaternary aquifer of Hebei Plain[J]. Hydrogeology and Engineering Geology, 1987(4): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198704001.htm
    [46] 张宗祜, 施德鸿, 任福弘, 等. 论华北平原第四系地下水系统之演化[J]. 中国科学: 地球科学, 1997, 27(2): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702012.htm

    Zhang Z H, Shi D H, Ren F H, et al. Evolution of Quaternary groundwater system in north China Plain[J]. Science in China: Earth Science, 1997, 27(2): 168-173(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702012.htm
    [47] 陈宗宇, 皓洪强, 卫文, 等. 华北平原深层地下水的更新与资源属性[J]. 资源科学, 2009, 31(3): 388-393. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200903010.htm

    Chen Z Y, Hao H Q, Wei W, et al. Groundwater renewal and characteristics in the deep confined aquifer in North China Plain[J]. Resources Science, 2009, 31(3): 388-393(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200903010.htm
    [48] 张人权, 梁杏, 靳孟贵. 末次盛冰期以来河北平原第四系地下水流系统的演变[J]. 地学前缘, 2013, 20(3): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm

    Zhang R Q, Liang X, Jin M G. The evolution of groundwater flow system in the Quaternary of Hebei Plain since the Last Glacial Maximum[J]. Earth Science Frontiers, 2013, 20(3): 217-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm
    [49] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [50] 龚再升, 王国纯. 中国近海油气资源潜力新认识[J]. 中国海上油气: 地质, 1997, 11(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199701000.htm

    Gong Z S, Wang G C. New thoughts upon petroleum resources potential in offshore China[J]. China Offshore Oil and Gas: Geology, 1997, 11(1): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199701000.htm
    [51] Liang X, Jin M G, Wang X S, et al. Modeling of paleo-groundwater flow in the eastern Pearl River Mouth basin[C]//Anon. Proceeding of the International Symposium on Hydrogeology and the Environment. Beijing: China Environmental Science Press, 2000.
    [52] Tóth J. Exploration for reservoir quality rock bodies by mapping and simulation of potentiometric surface anomalies[J]. Bulletin of Canadian Petroleum Geology, 1988, 36(4): 362-378.
    [53] Li J, Liang X, Jin M G, et al. Origin and evolution of aquitard porewater in the western coastal plain of Bohai Bay, China[J], Groundwater, 2017, 55(6): 917-925.
    [54] 张人权, 梁杏. 构造定量分析在岩溶水研究中的应用[J]. 地质科技情报, 1998, 17(增刊2): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.003.htm

    Zhang R Q, Liang X. Application of quantitative structural analysis in karst-water research[J]. Geological Science and Technology Information, 1998, 17(S2): 16-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.003.htm
    [55] 梁杏, 韩庆之, 曾克峰, 等. 巨型水利枢纽工程岩溶水渗漏的系统分析方法[J]. 地质科技情报, 1998, 17(增刊2): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.000.htm

    Liang X, Han Q Z, Zeng K F, et al. System approaches to analyze reservoir leakage possibility for a huge key conservancy project in karst area[J]. Geological Science and Technology Information, 1998, 17(S2): 4-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.000.htm
    [56] 王大纯. 我国水文地质学的展望[J]. 地球科学: 中国地质大学学报, 1985, 10(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501001.htm

    Wang D C. The prospect of the development of hydrogeology in China[J]. Earth Science: Journal of China University of Geosciences, 1985, 10(1): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501001.htm
    [57] 张人权. 关于水文地质学的一些思考[J]. 地质科技情报, 2002, 21(1): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201002.htm

    Zhang R Q. Some thinking on development of hydrogeology[J]. Geological Science and Technology Information, 2002, 21(1): 3-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201002.htm
  • 加载中
图(12)
计量
  • 文章访问数:  707
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回