Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects
-
摘要: 某国家重大引调水工程引水隧洞将穿越聚龙山向斜可溶岩地层,可能面临严重岩溶涌突水问题。为了查明隧洞突涌水条件,选择岩溶水害风险较低的引水方案,综合采用岩溶水文地质调查、水化学与同位素分析等方法对聚龙山向斜岩溶水流系统特征进行了识别。结果表明:聚龙山向斜含水系统具有"两含夹一隔"的多层结构,下部二叠系主要为埋藏型岩溶弱发育区,而上部三叠系裸露型岩溶区中发育了具有多级水流系统的巨型岩溶汇水盆地。穿聚龙山向斜段工程论证的3个方案中,A线方案从向斜西段岩溶水系统的补给区穿越,隧洞穿可溶岩段长度短、且全部为埋藏型岩溶,剖面上绕避了三叠系岩溶汇水盆地,发生岩溶涌突水的风险低;而B线方案和C线方案均进入了三叠系岩溶汇水盆地,穿越裸露型可溶岩段的长度大,遭遇高压岩溶突水的风险高,故推荐A线引水方案。研究成果可为引水隧洞线路比选提供科学依据,对类似深埋长隧洞工程建设也具有参考价值。Abstract: A critical water diversion project may face serious water inrush problems during tunnel construction when it crosses the carbonate rock formations of Julongshan syncline.Characteristics of karst water flow system in Julongshan syncline were identified by multi-methods such as karst hydrogeological field survey, hydrochemistry and isotope analysis, to find out the hydrogeological conditions of water inrush into the tunnel and select one water diversion scheme with lower risk of karst water disaster.The results show that the aquifer system in Julongshan syncline has a multi-layer structure with an impermeable layer between two aquifers.The Lower Permian is mainly buried underground with weak karst development, while the Upper Triassic bare karst area forms a giant karst basin with multi-stage water flow system.Three tunnel plans were demonstrated in Julongshan syncline area.Plan A passes through the recharge area of the karst water system in the western syncline, in which the length of soluble rock the tunnel passes through is the lowest and all belong to buried karst.It avoids to cross the Triassic karst water basin in the profile, therefore the risk of water-gushing for Plan A is relatively low.However, Plan B and Plan C will cross the Triassic karst water basin with longer soluble rock section and the risk of suffering karst water-gushing is much higher.So, Plan A is recommended.This study can provide a scientific basis for comparison and selection of diversion tunnel line, and also has reference value for similar deep-buried long tunnel construction.
-
Key words:
- deep-buried long tunnel /
- karst /
- water-gushing conditions /
- multi-stage water system /
- line comparison
-
表 1 水化学测试结果
Table 1. Hydrochemistry test results
编号 取样位置 高程/ m 流量/ (L·s-1) 温度/ ℃ TDS Cl- HCO3- SO42- Ca2+ K+ Mg2+ Na+ SICal SIDol δD/‰ δ18O/‰ 补给高程/m ρB/(mg·L-1) W1 聚龙山向斜西段 龙坪 1 132 2.5 12.9 151.00 6.06 244.00 14.06 76.26 0.45 1.24 0.64 0.32 -0.98 -52.84 -8.41 1 162 W2 龙坪深井 1 089 - 14.2 413.36 3.64 316.30 22.01 65.53 0.30 4.17 1.41 0.36 -2.23 -57.79 -8.82 1 303 W3 榔树岗泉 877 100 13.5 157.30 4.43 251.40 13.13 54.80 0.45 1.98 0.80 -0.16 -1.57 -53.54 -8.51 1 174 W4 何家冲泉 844 80 16.4 193.60 3.69 156.20 12.96 74.08 0.30 1.47 0.64 0.60 -0.27 -53.42 -8.49 1 165 W5 杜家冲 812 10 13.6 199.00 5.45 335.50 17.63 82.33 0.29 9.80 0.73 -0.15 -1.04 -50.13 -7.92 928 W6 阴坡台子 804 20 14.5 213.00 11.31 311.10 18.55 88.64 0.55 1.64 1.04 0.62 -0.29 -48.91 -7.74 853 W7 紫龙寺泉 775 100 16.3 206.80 4.84 324.00 16.32 74.93 0.42 2.71 0.68 -0.09 -1.40 -51.82 -8.15 1 024 W8 聚龙山向斜中段 漳河源 772 100 16.3 126.00 3.43 213.50 12.71 48.75 0.39 8.09 0.51 0.66 0.77 -52.75 -8.27 1 074 W9 星辰洞暗河 621 2 000 17.9 213.00 4.84 359.90 16.07 86.20 0.56 7.08 0.74 0.18 -0.47 -52.36 -8.27 1 074 W10 黑龙洞 445 100 22.0 226.00 3.41 142.80 20.86 97.25 0.34 5.14 0.40 0.04 -0.88 -51.25 -7.97 949 W11 甘溪暗河 395 1 000 14.1 189.20 4.31 79.30 14.75 68.55 0.49 5.08 0.59 -0.54 -2.01 -50.51 -7.99 957 W13 滴水岩 360 50 14.0 259.05 3.82 195.50 15.54 109.65 0.45 6.27 0.58 -0.09 -1.23 -52.38 -8.16 1 028 W15 仙鱼洞 353 2 000 15.4 189.00 4.14 193.40 15.08 73.52 0.48 7.91 0.59 -0.21 -1.18 -50.26 -7.78 870 W12 聚龙山向斜东段 西泉庙 377 500 16.5 369.05 3.71 378.20 19.85 93.91 0.40 9.23 0.57 1.97 3.20 -51.26 -7.77 865 W14 北庙泉 357 1 500 18.5 367.40 4.91 372.10 17.94 89.14 0.59 9.25 0.67 1.46 2.21 -50.89 -7.73 849 W16 千鱼泉 342 300 17.6 398.20 4.68 396.50 22.13 105.92 0.46 7.86 0.63 2.03 3.32 -50.41 -8.13 1 015 W17 十姑洞 332 800 18.4 355.85 4.51 414.80 23.82 108.11 0.44 6.10 0.62 0.93 0.87 -49.26 -7.80 878 W18 磨眼泉 330 360 17.8 396.00 4.24 396.50 20.68 98.85 0.41 9.79 0.59 1.92 3.11 -51.09 -7.81 882 W19 海洋泉 323 300 15.5 393.80 4.17 408.70 20.49 105.30 0.38 7.10 0.61 1.43 1.92 -50.02 -8.04 978 W20 小龙潭 296 100 16.1 379.50 3.79 390.40 24.98 96.26 0.26 9.42 0.58 1.57 2.36 -48.74 -7.73 849 W21 三眼泉 259 3 100 16.9 375.10 5.23 372.10 21.24 92.27 0.52 8.70 0.86 0.87 0.95 -49.38 -7.64 811 W22 骠马洞 252 300 15.8 188.00 4.49 305.00 19.73 74.25 0.46 7.82 0.68 -0.04 -2.3 -50.22 -8.06 986 W23 潮水洞 242 100 16.5 443.85 4.73 463.60 25.16 119.60 0.36 7.18 0.70 0.95 0.91 -50.21 -7.94 936 W24 响水洞 224 300 16.2 243.00 4.44 378.20 22.02 105.40 0.39 6.09 0.69 0.11 -0.22 -48.00 -7.84 895 W25 寨沟泉 214 100 16.8 261.00 3.97 433.10 25.29 122.77 0.30 2.73 0.70 0.11 -2.36 -49.48 -7.95 940 W26 上泉坪 211 360 17.5 412.50 3.71 427.00 24.45 101.03 0.35 11.29 0.66 1.03 1.36 -50.89 -7.96 945 注:SICal,SIDol分别为方解石、白云石矿物饱和指数 表 2 钻孔揭露局部深岩溶现象特征
Table 2. Characteristics of deep karst phenomenon revealed by drilling
钻孔编号 孔口高程/m 局部深岩溶下限高程/m 线路 描述 B1 696.55 76.75 B线 沿结构面溶蚀风化,局部呈1~2 cm缝状 B2 891.39 79.39 沿结构面溶蚀充泥 C1 380 104 C线 沿结构面溶蚀风化,附泥钙质 C2 348.45 108.45 蜂窝状溶蚀孔洞,孔洞宽2~5 mm C3 330 68.8 多沿结构面及方解石细脉溶蚀风化 C4 360 98 溶蚀晶孔较发育,呈蜂窝状 C5 544.4 -4 溶蚀孔洞,无充填,面附泥质 表 3 聚龙山向斜区各线路方案岩溶水文地质比选
Table 3. A comparison of karst hydrogeology of the various routes in Julongshan syncline
比选指标 A线 B线 C线 穿越的构造部位 聚龙山向斜西段 聚龙山向斜中段 聚龙山向斜东段 可溶岩地层时代 P1q+m P1q+m、T1d+j P1q+m、T1d+j 可溶岩段长度/km 2.45 30.85 40.44 埋藏型岩溶长度/km及占比/% 2.45/100 4.60/14.91 2.44/6.03 裸露型岩溶长度/km及占比/% 0/0 26.25/85.09 38.00/93.97 隧洞埋藏深度/m 900~1 100 500~1 100 200~500 岩溶水系统部位 平面 补给区 径流区 径流-排泄区 剖面 深部循环带 深部循环带 浅部循环带 围岩含水介质类型 裂隙 裂隙-溶隙 溶隙-管道 水害风险 低 高 高 -
[1] 钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设, 2019, 39(4): 523-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htmNiu X Q, Zhang C J. Some key technical issues on construction of ultra-long deep-buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm [2] Chang Q, Sun X, Zhou H, et al. A multivariate matrix model of analysing mine water bursting and its application[J]. Desalination and Water Treatment, 2018, 123: 20-26. doi: 10.5004/dwt.2018.22331 [3] Yang Y N, Zhang Q, Xu M. Numerical simulation method utilization in water gushing yield forecasting of Paoziling Tunnel in Hunan Province, China[J]. Applied Mechanics & Materials, 2014, 580/583: 1392-1397. [4] Fan H B, Zhang Y H, He S Y, et al. Hazards and treatment of karst tunneling in Qinling-Daba mountainous area: Overview and lessons learnt from Yichang-Wanzhou railway system[J]. Environmental Earth Sciences, 2018, 77(19): 679-696. doi: 10.1007/s12665-018-7860-1 [5] Xia W, Shi-Ru W. Study on water inflow estimation of highway tunnel karst cave in karst area[C]//20183rd International Conference on Smart City and Systems Engineering (ICSCSE), 2018. [6] 汪云, 杨海博, 郑梦琪, 等. 岩溶区深埋隧洞水文地质概念模型及突水模式[J]. 人民黄河, 2019, 41(7): 126-130. doi: 10.3969/j.issn.1000-1379.2019.07.027Wang Y, Yang H B, Zheng M Q, et al. Hydrogeological conceptual model and water inflow pattern analysis of deep diversion tunnel in karst area[J]. Yellow River, 2019, 41(7): 126-130(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2019.07.027 [7] Zhu Q Q, Miao Q Q, Jiang S P. On karst water inrush (gushing) geological environment in Pingyang Tunnel[J]. Applied Mechanics and Materials, 2014, 580/583: 1008-1012. doi: 10.4028/www.scientific.net/AMM.580-583.1008 [8] 常威, 谭家华, 黄琨, 等. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htmChang W, Tan J H, Huang K, et al. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua Tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. Carsologica Ainica, 2020, 39(3): 400-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm [9] 金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 北京: 中国地质科学院, 2007.Jin X F. Regularity of karst development along the Yichang-Wanzhou railway and its infuence on tunnel construction[D]. Beijing: Chinese Academy of Geological Sciences, 2007(in Chinese with English abstract). [10] 郭绪磊. 基于SAC改进模型的岩溶流域降水-径流过程模拟研究: 以宜昌泗溪流域为例[D]. 武汉: 中国地质大学(武汉), 2019.Guo X L. A case study on the simulation of precipitation and runoff process in karst basin based on modified SAC model[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract). [11] 韦澧佩. 岩溶水环境约束下的引水隧洞线路优选研究[D]. 成都: 成都理工大学, 2018.Wei L P. Research on the optimization of diversion tunnel route under the constraint of karst water environment: Take the wase segment of Mid-Yunnan Water Diversion Project as an example[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract). [12] 钟玲敏, 许模, 吴明亮, 等. 多级水流系统耦合下深部岩溶分异研究: 以川东隔挡式构造区中梁山背斜南段为例[J]. 水文地质工程地质, 2018, 45(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htmZhong L M, Xu M, Wu M L, et al. Development of deep karst under the coupling of multistage flow systems: A case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htm [13] 季怀松, 罗明明, 褚学伟, 等. 岩溶洼地内涝蓄水量与不同级次裂隙对溶质迁移影响的室内实验与模拟[J]. 地质科技通报, 2020, 39(5): 164-172. doi: 10.19509/j.cnki.dzkq.2020.0520Ji H S, Luo M M, Chu X W, et al. Laboratory experiment and simulation of solute transport affected by different grades of fissures and water storage of waterlogging in karst depression[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 164-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0520 [14] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054 [15] 田清朝, 万军伟, 黄琨, 等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程, 2016, 23(5): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htmTian Q C, Wan J W, Huang K, et al. Karst water system identification and water inflow prediction in Gaojiaping Tunnel[J]. Safety and Environmental Enginerring, 2016, 23(5): 13-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm [16] 吴剑疆. 大埋深输水隧洞设计和施工中的关键问题探讨[J]. 水利规划与设计, 2020(4): 120-125. doi: 10.3969/j.issn.1672-2469.2020.04.029Wu J J. Discussion on key issues in design and construction of large buried depth water conveyance tunnel[J]. Water Resources Planning and Design, 2020(4): 120-125(in Chinese with English abstract). doi: 10.3969/j.issn.1672-2469.2020.04.029 [17] Guillaume L, Roland L, Nicolas P, et al. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France[J]. Journal of Hydrology, 2018, 566: S0022169418307030. [18] Qian J, Peng Y, Zhao W, et al. Hydrochemical processes and evolution of karst groundwater in the northeastern Huabei Plain, China[J]. Hydrogeology Journal, 2018, 26: 1721-1729. doi: 10.1007/s10040-018-1805-3 [19] Marques J, Matos C, Carreira P, et al. Isotopes and geochemistry to assess shallow/thermal groundwater interaction in a karst/fissured-porous environment (Portugal): A review and reinterpretation[J]. Sustainable Water Resources Management, 2019, 5: 1525-1536. doi: 10.1007/s40899-017-0207-3 [20] 罗明明, 黄荷, 尹德超, 等. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htmLuo M M, Huang H, Yin D C, et al. Source identification of water inrush in the Xiakou tunnel based on hydrochemistry and hydrogen-oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 7-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm [21] Li P, Wu J, Tian R, et al. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China[J]. Mine Water and the Environment, 2018, 37: 222-237. doi: 10.1007/s10230-017-0507-8 [22] 武亚遵, 万军伟, 林云. 湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析[J]. 地质科技情报, 2011, 30(3): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103015.htmWu Y Z, Wan J W, Lin Y. Characteristics of hydrogen and oxygen isotopes for precipitation in Xiling Gorge Region of Yichang, Hubei Province[J]. Geological Science and Technology Information, 2011, 30(3): 93-97(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103015.htm [23] 赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htmZhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotopic characteristics and influencing factors of karst water in the Niangziguan spring area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm [24] 黄荷, 罗明明, 陈植华, 等. 香溪河流域大气降水稳定氢氧同位素时空分布特征[J]. 水文地质工程地质, 2016, 43(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htmHuang H, Luo M M, Chen Z H, et al. The spatial and temporal distribution of stable hydrogen and oxygen isotope of meteoric water in Xiangxi River basin[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 36-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htm