留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风振影响下乔木坡地暴雨型浅层滑坡演化机制

缪海波 王功辉

缪海波, 王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报, 2022, 41(2): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0011
引用本文: 缪海波, 王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报, 2022, 41(2): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0011
Miao Haibo, Wang Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0011
Citation: Miao Haibo, Wang Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0011

风振影响下乔木坡地暴雨型浅层滑坡演化机制

doi: 10.19509/j.cnki.dzkq.2022.0011
基金项目: 

安徽省自然科学基金青年基金项目 1508085QD78

国家自然科学基金青年基金项目 41502335

中国博士后科学基金项目 2016M592032

详细信息
    作者简介:

    缪海波(1985—), 男, 副教授, 主要从事岩土体稳定性与地质灾害方面的教学与研究工作。E-mail: mhblowal@126.com

  • 中图分类号: P642.22

Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration

  • 摘要: 强对流或台风等极端天气下乔木坡地发生浅层滑坡灾害往往是暴雨和强风共同作用的结果。以皖南山区一处暴雨型浅层滑坡——畈章组滑坡为例, 通过现场调查和气象资料的分析表明, 除暴雨外风荷载也有可能促进滑坡的启动。为揭示该滑坡启动与破坏后这一完整运动过程的演化机制, 首先基于无限斜坡模型分析了实际降雨条件下的滑坡稳定性, 然后对取自于滑坡体内乔木根系周围和滑动面附近的两种土样利用DPRI型环剪仪, 分别开展了不排水循环剪切试验和自然排水残余剪切试验。结果表明: ①降雨入渗引起滑动面孔隙水压力的上升, 并导致稳定性的降低是畈章组滑坡启动的直接原因; ②乔木根系周围的饱和土在风振作用产生的动剪切荷载下易形成高的超孔隙水压力, 并导致浅表层的局部失稳滑动, 增加了畈章组滑坡整体破坏的可能性; ③滑动面土体的残余强度具有强烈的"正速率效应", 从而控制了畈章组滑坡启动后不会表现出高速远程的运动特征, 与现场调查结论一致。研究结果可以为暴雨协同风振作用下富乔木坡地浅层滑坡的预警预报研究提供参考。

     

  • 图 1  强降雨协同风振诱发浅层滑坡示意

    Figure 1.  Schematic illustration of a shallow landslide triggered by heavy rainfall combined with wind-induced vibration

    图 2  畈章组滑坡工程地质背景及取样位置

    Figure 2.  Engineering geological setting of the Fanzhangzu landslide and the location of samples

    图 3  畈章组滑坡处降雨量

    Figure 3.  Rainfall on the Fanzhangzu landslide

    图 4  畈章组滑坡处最大风速与风向

    Figure 4.  Maximum wind velocity and wind direction on the Fanzhangzu landslide

    图 5  试样颗粒级配曲线

    Figure 5.  Grain size distribution of the samples

    图 6  试样FZZ-1黏土矿物的X射线粉晶衍射

    Figure 6.  X-ray powder diffraction analysis for the clay minerals of sample FZZ-1

    图 7  无限斜坡模型示意(图中代号说明见正文)

    Figure 7.  Schematic illustration of the infinite slope model

    图 8  畈章组滑坡滑动面孔隙水压力及稳定系数变化

    Figure 8.  Variation in the pore-water pressure on the sliding surface and the factor of safety of the Fanzhangzu landslide

    图 9  DPRI-5型环剪仪构造示意图

    Figure 9.  Schematic diagram of structure representation of the DPRI-5 ring shear apparatus

    图 10  饱和试样FZZ-2不排水循环剪切试验(初始静剪应力τ0=35 kPa)

    Figure 10.  Undrained cyclic ring-shear test on saturated sample FZZ-2 at the initial static shear stress (τ0) of 35 kPa

    图 11  饱和试样FZZ-2不排水循环剪切试验(预设静剪应力τ=60 kPa)

    Figure 11.  Undrained cyclic ring-shear test on saturated sample FZZ-2 at the preset static shear stress (τ) of 60 kPa

    图 12  试样FZZ-1残余抗剪强度包络线

    Figure 12.  Residual shear strength envelope of sample FZZ-1

    图 13  不同剪切速率下试样FZZ-1自然排水环剪试验(σ=260 kPa)

    Figure 13.  Ring shear test on sample FZZ-1 with different shear displacement rates under naturally drained conditions at a total normal stress of 260 kPa

    图 14  试验后试样FZZ-1的剪切带

    Figure 14.  Shear zone of sample FZZ-1 after the ring shear tests

    图 15  试验后试样FZZ-1剪切带粒度成分

    Figure 15.  Grain size distribution of the shear zone of sample FZZ-1 before and after ring shear tests

    表  1  试样基本物理性质指标

    Table  1.   Physical properties of the samples

    试样 ρd/(g·cm-3) Gs wL/% wP/% IP Ks/(cm·s-1)
    FZZ-1 1.37 2.73 42.19 24.33 17.86 1.95×10-5
    FZZ-2 1.30 2.70 38.13 25.01 13.12 5.22×10-5
    注:ρd为干密度;Gs为土粒相对密度;wL为液限含水率;wP为塑限含水率;IP为塑性指数;Ks为饱和渗透系数
    下载: 导出CSV

    表  2  无限斜坡模型计算参数

    Table  2.   Calculation parameters of the infinite slope model

    H/m d*/m D0/(m2·s-1) q0/kPa α/(°) Kz*/(cm·s-1) c'/kPa φ'/(°)
    8.0 4.0 7.0×10-5 0.47 23.0 5.22×10-5 12.24 27.54
    注:D0根据文献[21]取值;c'φ'由饱和试样FZZ-1的直剪试验获得(初始干密度为1.37 g/cm3);q0根据文献[1]取值
    下载: 导出CSV
  • [1] Wang G, Jiang Y, Chang C, et al. Volcaniclastic debris avalanche on Motomachi area of Izu-Oshima, Japan, triggered by severe storm: Phenomenon and Mechanisms[J]. Engineering Geology, 2019, 251: 24-36. doi: 10.1016/j.enggeo.2019.02.003
    [2] 卢操, 晏鄂川, 张瑜, 等. 降雨作用下青石镇政府后山堆积层滑坡渗流与稳定性[J]. 地质科技通报, 2020, 39(2): 139-147. doi: 10.19509/j.cnki.dzkq.2020.0215

    Lu C, Yan E C, Zhang Y, et al. Seepage and stability of the colluvial landslide on the back hill of Qingshi Town Government under rainfall[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 139-147 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0215
    [3] 沈佳, 董岩松, 简文彬, 等. 台风暴雨型土质滑坡演化过程研究[J]. 工程地质学报, 2020, 28(6): 1290-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006015.htm

    Shen J, Dong Y S, Jian W B, et al. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology, 2020, 28(6): 1290-1299 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006015.htm
    [4] Iverson R M. Landslide triggering by rain infiltration[J]. Water Resources Research, 2000, 36(7): 1897-1910. doi: 10.1029/2000WR900090
    [5] Cuomo S, Sala D M. Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits[J]. Engineering Geology, 2013, 162: 118-127. doi: 10.1016/j.enggeo.2013.05.010
    [6] 王腾飞, 李远耀, 曹颖, 等. 降雨型浅层土质滑坡非饱和土-水作用特征试验研究[J]. 地质科技情报, 2019, 38(6): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906022.htm

    Wang T F, Li Y Y, Cao Y, et al. Experimental study on unsaturated soil-water interaction characteristics of rainfall-type shallow soil landslide[J]. Geological Science and Technology Information, 2019, 38(6): 181-188 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906022.htm
    [7] 张磊, 张璐璐, 程演, 等. 考虑潜蚀影响的降雨入渗边坡稳定性分析[J]. 岩土工程学报, 2014, 36(9): 1680-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409020.htm

    Zhang L, Zhang L L, Cheng Y, et al. Slope stability under rainfall infiltration considering internal erosion[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1680-1687 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409020.htm
    [8] Cui Y, Jiang Y, Guo C. Investigation of the initiation of shallow failure in widely graded loose soil slopes considering interstitial flow and surface runoff[J]. Landslides, 2019, 16: 815-828. doi: 10.1007/s10346-018-01129-9
    [9] Bordoloi S, Ng C W W. The effects of vegetation traits and their stability functions in bio-engineered slopes: A perspective review[J]. Engineering Geology, 2020, 275: 105742. doi: 10.1016/j.enggeo.2020.105742
    [10] Mao Z, Jourdan C, Bonis M L, et al. Modelling root demography in heterogeneous mountain forests and applications for slope stability analysis[J]. Plant and Soil, 2013, 363(1/2): 357-382.
    [11] 王照财, 赵其华, 韩俊, 等. 台风作用下植被对斜坡稳定性影响的物理模拟[J]. 自然灾害学报, 2013, 22(4): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201304018.htm

    Wang Z C, Zhao Q H, Han J, et al. Physical modeling of the effect of vegetation on slope stability under typhoon[J]. Journal of Natural Disasters, 2013, 22(4): 145-152 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201304018.htm
    [12] McDonald J I. The effects of timber harvesting and windthrow on landslide initiation, southwestern Vancouver Island[D]. Vancouver: Simon Fraser University, 2011.
    [13] Nelson O, Kassim A, Yunusa G H. Modelling the effect of wind forces on landslide occurrence in Bududa District, Uganda[J]. Jurnal Teknologi: Sciences & Engineering, 2015, 77(11): 35-42.
    [14] 孔维伟, 赵其华, 韩俊, 等. 台风滑坡变形破坏机制模型试验研究[J]. 工程地质学报, 2013, 21(2): 297-303. doi: 10.3969/j.issn.1004-9665.2013.02.016

    Kong W W, Zhao Q H, Han J, et al. Model experiments for deformation and failure mechanism of typhoon induced landslide[J]. Journal of Engineering Geology, 2013, 21(2): 297-303 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2013.02.016
    [15] 闫金凯, 黄俊宝, 李海龙, 等. 台风暴雨型浅层滑坡失稳机理研究[J]. 地质力学学报, 2020, 26(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004005.htm

    Yan J K, Huang J B, Li H L, et al. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics, 2020, 26(4): 481-491 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004005.htm
    [16] Rulli M C, Meneguzzo F, Rosso R. Wind control of storm-triggered shallow landslides[J]. Geophysical Research Letters, 2007, 34(3): 407-423.
    [17] James K R, Dahle G A, Grabosky J, et al. Tree biomechanics literature review: Dynamics[J]. Arboriculture & Urban Forestry, 2014, 40(1): 1-15.
    [18] Kuenza K, Towhata I, Orense R P, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004, 1(3): 185-194. doi: 10.1007/s10346-004-0023-3
    [19] 中华人民共和国行业标准编写组. 土工试验方法标准: GB/T 50123-1999[S]. 北京: 中国计划出版社, 1999.

    The Professional Standards Compilation Group of People's Republic of China. Standard for soil test method: GB/T 50123-1999[S]. Beijing: China Planning Press, 1999(in Chinese).
    [20] Muntohar A S, Liao H J. Rainfall infiltration: Infinite slope model for landslides triggering by rainstorm[J]. Natural Hazards, 2010, 54(3): 967-984. doi: 10.1007/s11069-010-9518-5
    [21] Hu X, Bürgmann R, Lu Z, et al. Mobility, thickness, and hydraulic diffusivity of the slow-moving Monroe Landslide in California revealed by L-Band satellite radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(7): 7504-7518. doi: 10.1029/2019JB017560
    [22] Sassa K, Fukuoka H, Wang G, et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 2004, 1(1): 7-19. doi: 10.1007/s10346-003-0004-y
    [23] Moore J R, Maguire D A. Natural sway frequencies and damping ratios of trees: Influence of crown structure[J]. Trees, 2005, 19(4): 363-373. doi: 10.1007/s00468-004-0387-y
    [24] Baker C J. Measurements of the natural frequencies of trees[J]. Journal of Experimental Botany, 1997, 48: 1125-1132. doi: 10.1093/jxb/48.5.1125
    [25] James K R, Haritos N, Ades P K. Mechanical stability of trees under dynamic loads[J]. American Journal of Botany, 2006, 93(10): 1522-1530. doi: 10.3732/ajb.93.10.1522
    [26] James K R, Kane B. Precision digital instruments to measure dynamic wind loads on trees during storms[J]. Agricultural and Forest Meteorology, 2008, 148(6/7): 1055-1061.
    [27] Sagi P V. Foundation effects of trees under wind loads[D]. Ontario: The University of Western Ontario, 2016.
    [28] Wang G, Sassa K. Seismic loading impacts on excess pore-water pressure maintain landslide triggered flowslides[J]. Earth Surface Processes and Landforms, 2009, 34(2): 232-241. doi: 10.1002/esp.1708
    [29] Skempton A W. Residual strength of clays in landslides, folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18. doi: 10.1680/geot.1985.35.1.3
    [30] Tika T E, Vaughan P R, Lemos L J L. Fast shearing of pre-existing shear zones in soil[J]. Géotechnique, 1996, 46(2): 197-233. doi: 10.1680/geot.1996.46.2.197
    [31] Wang G, Suemine A, Schulz W H. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan[J]. Earth Surface Processes and Landforms, 2010, 35(4): 407-416.
    [32] Hu W, Xu Q, Wang G, et al. Shear resistance variations in experimentally sheared mudstone granules: A possible shear-thinning and thixotropic mechanism[J]. Geophysical Research Letters, 2017, 44(21): 11040-11050.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  818
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27

目录

    /

    返回文章
    返回