留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘肃北山-河西走廊-祁连山区域地下水循环模式

董艳辉 符韵梅 王礼恒 王驹 张倩 宗自华 周志超

董艳辉, 符韵梅, 王礼恒, 王驹, 张倩, 宗自华, 周志超. 甘肃北山-河西走廊-祁连山区域地下水循环模式[J]. 地质科技通报, 2022, 41(1): 79-89. doi: 10.19509/j.cnki.dzkq.2022.0012
引用本文: 董艳辉, 符韵梅, 王礼恒, 王驹, 张倩, 宗自华, 周志超. 甘肃北山-河西走廊-祁连山区域地下水循环模式[J]. 地质科技通报, 2022, 41(1): 79-89. doi: 10.19509/j.cnki.dzkq.2022.0012
Dong Yanhui, Fu Yunmei, Wang Liheng, Wang Ju, Zhang Qian, Zong Zihua, Zhou Zhichao. Regional groundwater flow pattern in Beishan, Hexi Corridor and Qilian Mountain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 79-89. doi: 10.19509/j.cnki.dzkq.2022.0012
Citation: Dong Yanhui, Fu Yunmei, Wang Liheng, Wang Ju, Zhang Qian, Zong Zihua, Zhou Zhichao. Regional groundwater flow pattern in Beishan, Hexi Corridor and Qilian Mountain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 79-89. doi: 10.19509/j.cnki.dzkq.2022.0012

甘肃北山-河西走廊-祁连山区域地下水循环模式

doi: 10.19509/j.cnki.dzkq.2022.0012
基金项目: 

青藏高原综合科学考察研究项目 2019QZKK0904

国防科工局核设施退役治理专项科研项目 科工二司[2020]194号

详细信息
    作者简介:

    董艳辉(1980-), 男, 副研究员, 主要从事复杂介质地下水流动及反应溶质运移研究工作。E-mail: dongyh@mail.iggcas.ac.cn

  • 中图分类号: P641

Regional groundwater flow pattern in Beishan, Hexi Corridor and Qilian Mountain

  • 摘要: 山区地下水流动受到区域气候条件、地形地貌、地质构造等因素共同控制,限于资料有限,其流动模式与控制机理尚不清晰。特别是地处甘肃北山的高放废物地质处置库预选区、河西走廊以及祁连山北麓区域地下水的流动模式,直接决定了处置库在万年时间尺度上的安全性。基于区域遥感构造解译、地质构造演化分析、地球物理勘探以及水文地质钻探,获取了典型剖面的水文地质结构与渗透特征;综合区域水文地质调查、水文地球化学与同位素特征数据,构建了甘肃北山-河西走廊-祁连山山区的水文循环概念模型;并通过构建区域地下水流动数值模型与多情景模拟,分析了甘肃北山-河西走廊-祁连山山区的地下水流动模式。结果表明,地形对于该地区的地下水流动模式具有主控作用,祁连山山区地下水难以越过海拔最低的河西走廊至北山山区排泄,河西走廊是祁连山山区地下水系统与北山山区地下水系统的边界;北山山区地下水在地形与岩性的控制下,仅发育局部流动系统且渗流速度缓慢。同时由于该地区地质构造的阻滞作用,北山新场地下水无法径直向南穿越构造向花海盆地排泄,渗流路径长度明显增加;仅有F95断裂构造以南山前地带地下水可向花海盆地排泄,但由于集水流域有限、渗流速度缓慢、循环交替能力差,排泄量较小。本研究探究了山区-盆地地下水循环模式,为高放废物地质处置库候选场址的适宜性评价提供了科学依据。

     

  • 图 1  研究区地理位置(a)、构造特征(b)和水文地质简图(c)

    1.浅钻孔(深度小于300 m);2.深钻孔(深度大于500 m);3.地名;4.河流;5.主要断裂;6.农灌区;7.变质岩类裂隙水;8.火成岩类裂隙水;9.第四系孔隙水;10.变质岩带;11.地下水流向

    Figure 1.  Location (a), tectonic map (b) and hydrogeological map (c) of the study area

    图 2  研究区地质与地球物理剖面结构(剖面线位置见图 1c中A-B-C)

    a.祁连山-宽滩山-花海盆地-北山地质剖面(据玉门幅水文地质图修改);b.EH4电阻率剖面

    Figure 2.  Geological and geophysical sectin structure of the study aera

    图 3  北区地质结构(剖面B-C位置见图 1-c)

    Figure 3.  Geological structure in north part of the study area

    图 4  研究区地下水同位素与降水线对比图(数据引自文献[11, 26])

    Figure 4.  Comparison diagram of groundwater isotope to meteoric water line in the study area

    图 5  研究区地下水流动模式图

    其中a, b, c, d横纵比例尺与图 2-b中一致,剖面线A-B-C位置见图 1

    Figure 5.  Groundwater flow pattern in the study area

    图 6  北山(新场)-花海盆地地下水流动模式

    Figure 6.  Groundwater flow pattern in Beishan Mountain (Xinchang)-Huahai Basin

  • [1] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [2] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [3] Wang L, Dong Y, Xu Z. A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China[J]. Journal of Asian Earth Sciences, 2017, 146: 20-29. doi: 10.1016/j.jseaes.2017.04.023
    [4] 邢文乐, 马瑞, 孙自永, 等. 敦煌盆地地下水水化学特征及水质评价[J]. 地质科技情报, 2016, 35(5): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605027.htm

    Xing W L, Ma R, Sun Z Y, et al. Hydrochemical characteristics and water quality evaluation of groundwater in Dunhuang Basin[J]. Geological Science and Technology Information, 2016, 35(5): 196-202(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605027.htm
    [5] 王驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10): 2072-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm

    Wang J. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10): 2072-2082(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm
    [6] 郭永海, 刘淑芬, 王驹, 等. 高放废物处置库选址中的水文地质特性评价[J]. 世界核地质科学, 2007, 24(4): 233-237. doi: 10.3969/j.issn.1672-0636.2007.04.009

    Guo Y H, Liu S F, Wang J, et al. Hydrological performance assessment on siting the high level radioactive waste repository[J]. World Nuclear Geoscience, 2007, 24(4): 233-237(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2007.04.009
    [7] Markovich K H, Manning A H, Condon L E, et al. Mountain-block recharge: A review of current understanding[J]. Water Resources Research, 2019, 55(11): 8278-8304. doi: 10.1029/2019WR025676
    [8] Bresciani E, Cranswick R H, Banks E W, et al. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers[J]. Hydrol. Earth Syst. Sci., 2018, 22(2): 1629-1648. doi: 10.5194/hess-22-1629-2018
    [9] Ajami H, Troch P A, Maddock T, et al. Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships[J]. Water Resources Research, 2011, 47(4): W04504.
    [10] 丁宏伟, 张举, 吕智, 等. 河西走廊水资源特征及其循环转化规律[J]. 干旱区研究, 2006, 23(2): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200602008.htm

    Ding H W, Zhang J, Lv Z, et al. Characteristics and cycle conversion of water resources in the Hexi Corridor[J]. Arid Zone Research, 2006, 23(2): 241-248(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200602008.htm
    [11] 王礼恒. 甘肃北山区域-盆地-岩体多尺度地下水数值模拟研究[D]. 北京: 中国科学院地质与地球物理研究所, 2015.

    Wang L H. Multi-scale groundwater numerical simulation study of regional-basin-site in Beishan area of Gansu[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2015(in Chinese with English abstract).
    [12] 陈建生, 赵霞. 塔里木盆地与北山地区高放废物处置地质环境安全性对比分析[J]. 岩石力学与工程学报, 2007, 89(增刊1): 3297-3303. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1105.htm

    Chen J S, Zhao X. Contrastive analysis of geological condition security for disposal location of high-level nuclear waste between Tarim Basin and Beishan area[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 89(S1): 3297-3303(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1105.htm
    [13] 郭永海, 刘淑芬, 吕川河. 高放废物处置系统地下水同位素特征[J]. 地球学报, 2003, 24(6): 525-528. doi: 10.3321/j.issn:1006-3021.2003.06.008

    Guo Y H, Liu S F, Lü C H. Isotope characteristics of groundwater in the potential site of a high-level waste repository in China[J]. Acta Geoscientica Sinica, 2003, 24(6): 525-528(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2003.06.008
    [14] 庞忠和, 郭永海, 苏锐, 等. 北山花岗岩裂隙地下水循环属性试验研究[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3954-3958. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2052.htm

    Pang Z H, Guo Y H, Su R, et al. Experimental study on cycle property of groundwater in fractured granite in Beishan, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3954-3958(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2052.htm
    [15] 李杰彪, 苏锐, 周志超, 等. 基于环境示踪剂氯的北山地区浅部地下水补给研究[J]. 干旱区地理, 2020, 43(1): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202001016.htm

    Li J B, Su R, Zhou Z C, et al. Estimation of shallow groundwater recharge using the environmental tracer chloride method in Beishan area[J]. Arid Land Geography, 2020, 43(1): 135-143(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202001016.htm
    [16] 周志超. 高放废物处置库北山预选区深部地下水成因机制研究[D]. 北京: 核工业北京地质研究院, 2014.

    Zhou Z C. The mechanism of genesis of groundwater in the potential site of a high-level waste repository in Beishan[D]. Beijing: Nuclear Industry Geological Research Institute in Beijing, 2014(in Chinese with English abstract).
    [17] Liu Y, Song C, Meng Q, et al. Paleoclimate change since the Miocene inferred from clay-mineral records of the Jiuquan Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109730. doi: 10.1016/j.palaeo.2020.109730
    [18] 高雄雄. 酒泉盆地花海凹陷下白垩统致密油成藏条件与富集机理[D]. 北京: 中国石油大学(北京), 2013.

    Gao X X. Research on the hydrocarbon accumulation condition and enrichment mechanism of tight oil of Lower Cretaceous in the Huahai Depression of Jiuquan Basin[D]. Beijing: China University of Petroleum (Beijing), 2013(in Chinese with English abstract).
    [19] 熊章强. 根据地球物理场特征评价核废物处置场址: 对疏勒河断裂带稳定性评价[J]. 华东地质学院学报, 2001, 24(3): 209-213. doi: 10.3969/j.issn.1674-3504.2001.03.007

    Zhang X Q. Characters of geology and geophysics field in the middle region of Shulei River fault zone and stability evaluations on the nuclear waste disposal repository[J]. Journal of East China Geological Institute, 2001, 24(3): 209-213(in Chinese with English abstract). doi: 10.3969/j.issn.1674-3504.2001.03.007
    [20] Saar M O, Manga M. Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B4): B04204.
    [21] Worthington S R H, Davies G J, Alexander E C. Enhancement of bedrock permeability by weathering[J]. Earth-Science Reviews, 2016, 160: 188-202. doi: 10.1016/j.earscirev.2016.07.002
    [22] Welch L A, Allen D M. Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow[J]. Hydrogeology Journal, 2014, 22(5): 1003-1026. doi: 10.1007/s10040-014-1121-5
    [23] 赵良菊, 尹力, 肖洪浪, 等. 黑河源区水汽来源及地表径流组成的稳定同位素证据[J]. 科学通报, 2011, 56(1): 58-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201101009.htm

    Zhao L J, Yin L, Xiao H L, et al. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin[J]. Chinese Science Bulletin, 2011, 56(1): 58-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201101009.htm
    [24] Qin D, Qian Y, Han L, et al. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China[J]. Journal of Hydrology, 2011, 405(1/2): 194-208.
    [25] 李杰彪, 苏锐, 周志超, 等. 北山地区大气降水中水化学及稳定同位素特征[J]. 中国环境科学, 2020, 40(12): 5152-5161. doi: 10.3969/j.issn.1000-6923.2020.12.006

    Li J B, Su R, Zhou Z C, et al. Hydrochemical and stable isotope characteristics of precipitation in Beishan area[J]. China Environmental Science, 2020, 40(12): 5152-5161(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2020.12.006
    [26] Wang L, Li G, Dong Y, et al. Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: A case study in the upper-middle reaches of the Shule River basin, northwestern China[J]. Environmental Earth Sciences, 2015, 73(4): 1901-1915. doi: 10.1007/s12665-014-3719-2
    [27] 王礼恒, 董艳辉, 宋凡, 等. 甘肃石油河流域地下水补给来源与演化特征分析[J]. 干旱区地理, 2017, 40(1): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201701009.htm

    Wang L H, Dong Y H, Song F, et al. Recharge sources and hydrogeochemical properties of groundwater in the Shiyou River, Gansu Province[J]. Arid Land Zone, 2017, 40(1): 54-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201701009.htm
    [28] Wang L, Dong Y, Xie Y, et al. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China[J]. Hydrogeology Journal, 2016, 24(8): 1967-1979. doi: 10.1007/s10040-016-1456-1
    [29] Tóth Á, Havril T, Simon S, et al. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction[J]. Journal of Hydrology, 2016, 539: 330-344. doi: 10.1016/j.jhydrol.2016.05.038
    [30] 曹潇元, 侯德义, 胡立堂. 甘肃北山区域地下水流数值模拟研究[J]. 水文地质工程地质, 2020, 47(2): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002003.htm

    Cao X Y, Hou D Y, Hu L T. Numerical simulation of regional groundwater flow in the Beishan area of Gansu[J]. Hydrogeology & Engineering Geolgogy, 2020, 47(2): 9-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002003.htm
    [31] 武毅, 郭建强, 朱庆俊, 等. 基岩水与平原水转换关系的地球物理勘查技术探讨[J]. 地球学报, 2004, 25(3): 369-372. doi: 10.3321/j.issn:1006-3021.2004.03.016

    Wu Y, Guo J Q, Zhu Q J, et al. Geophysical prospecting techniques for the interchange between bedrock water and plain water[J]. Acta Geoscientica Sinica, 2004, 25(3): 369-372(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2004.03.016
  • 加载中
图(6)
计量
  • 文章访问数:  795
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-30
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回