留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

注入丁醇调节重非水液相密度的微空隙试验模拟

周媛 杨盼瑞 郭会荣 原敏 王哲 周萍

周媛, 杨盼瑞, 郭会荣, 原敏, 王哲, 周萍. 注入丁醇调节重非水液相密度的微空隙试验模拟[J]. 地质科技通报, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016
引用本文: 周媛, 杨盼瑞, 郭会荣, 原敏, 王哲, 周萍. 注入丁醇调节重非水液相密度的微空隙试验模拟[J]. 地质科技通报, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016
Zhou Yuan, Yang Panrui, Guo Huirong, Yuan Min, Wang Zhe, Zhou Ping. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: Pore-scale experimental simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016
Citation: Zhou Yuan, Yang Panrui, Guo Huirong, Yuan Min, Wang Zhe, Zhou Ping. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: Pore-scale experimental simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016

注入丁醇调节重非水液相密度的微空隙试验模拟

doi: 10.19509/j.cnki.dzkq.2022.0016
基金项目: 

国家自然科学基金项目 41672244

国家自然科学基金项目 42177077

详细信息
    作者简介:

    周媛(1996-), 女, 现正攻读水利工程专业硕士学位, 主要从事地下水DNAPL修复研究工作。E-mail: 442615672@qq.com

    通讯作者:

    郭会荣(1971-), 女, 教授, 博士生导师, 主要从事地下介质中多相流体输运反应机理实验与数值模拟研究工作。E-mail: elsieguo@126.com

  • 中图分类号: P641

Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: Pore-scale experimental simulation

  • 摘要: 密度大于水的重非水液相(DNAPLs)有机污染物在重力作用下向地下介质深部迁移从而增加污染范围。前人通过一维砂柱和二维砂箱试验发现利用密度调节技术可降低DNAPLs向下迁移的风险,但目前缺乏微观尺度上密度调节影响DNAPLs迁移的定量观测。本研究试验模拟丁醇注入微空隙调节四氯乙烯(PCE)的密度,通过建立非水相中染色PCE浓度、密度与灰度的定量关系,监测注入丁醇后空隙介质中非水相密度的动态变化,基于空隙中代表性非水相PCE受力情况分析其运移状态,揭示空隙尺度介质性质和密度调节程度对DNAPLs迁移的影响。试验结果表明:丁醇注入后,PCE浓度和密度迅速下降,离散状PCE与丁醇有效接触面积大且起效快;当非水相密度降至略大于水相密度时,非水相受毛细力和摩擦力的影响停止向下迁移;当非水相密度小于水相密度时,非水相才在注入压力与浮力的作用下克服毛细力、重力和摩擦力向上迁移;注入压力、摩擦力、毛细力、浮力与重力影响着空隙中非水相的迁移行为,空隙半径越大,毛细力对调节PCE向上迁移的影响越小;密度比水小的丁醇注入介质后向上迁移,因此丁醇从DNAPLs下端注入可提高修复效率。试验证实了向空隙介质中注入丁醇能够显著减小DNAPLs的密度从而降低其向下迁移的风险,为实际场地DNAPLs修复方案的制定提供微观机制方面的信息。

     

  • 图 1  试验装置示意图

    Figure 1.  Schematic diagram of experimental equipment

    图 2  微空隙模板中裂隙网络示意图

    Figure 2.  Schematic diagram of fracture network in microvoids

    图 3  染色非水相中PCE体积分数与灰度和密度的关系图

    a.灰度与染色非水相中PCE体积分数的关系; b.染色非水相密度与灰度的关系; c.比色卡

    Figure 3.  Relationship between PCE concentration and grayscale and density in dyeing PCE- butanol mixed phase

    图 4  代表性染色PCE团位置图

    Figure 4.  Location of representative dyeing PCE blobs(n-BuOH injection on the right side and outflow on the left side)

    图 5  A点染色非水相中PCE体积分数变化与迁移图(右侧注入丁醇左侧流出)

    Figure 5.  Variations and migration of PCE concentration dyeing PCE-butanol blobs at point A(n-BuOH injection on the right and outflow on the left)

    图 6  B点染色非水相中PCE体积分数变化与迁移图(右侧注入丁醇左侧流出)

    Figure 6.  Variations and migration of PCE concentration dyeing PCE-butanol blobs at point B(n-BuOH injection on the right and outflow on the left)

    图 7  A点和B点染色非水相受力随丁醇注入量变化图

    Figure 7.  Stress variation diagram of the dyeing PCE-butanol blobs at points A and B with the injection amount of n-BuOH

    表  1  微空隙模板中裂隙特征

    Table  1.   Fracture properties in microvoids

    裂隙名称 延伸长度/cm 角度/(°) 平均隙宽/mm
    N1 2.53 84.51 1.14
    N2 1.81 21.58 0.86
    N3 2.17 127.09 0.69
    N4 3.06 59.49 0.50
    N5 2.12 23.08 0.76
    N6 2.65 143.60 0.65
    N7 1.67 32.34 0.72
    N8 2.05 76.40 0.89
    下载: 导出CSV
  • [1] 任加国, 郜普闯, 徐祥健, 等. 地下水氯代烃污染修复技术研究进展[J]. 环境科学研究, 2021, 34(7): 1641-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202107015.htm

    Ren J G, Gao P G, Xu X J, et al. Advances in remediation technology for chlorinated hydrocarbons contamination of groundwater[J]. Research of Environmental Sciences, 2021, 34(7): 1641-1653(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202107015.htm
    [2] 郭亚敏. DNAPL污染物运移规律研究[D]. 北京: 中国矿业大学, 2019.

    Guo Y M. Study on the migration law of dense non-aqueous phase liquids pollutants[J]. Beijing: China University of Mining and Technology, 2019(in Chinese with English abstract).
    [3] 蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm

    Pu S Y, Tang J, Hou G Q, et al. The application progress of sustained-release chemical oxidants in the remediation of DNAPLs contaminated groundwater[J]. Environmental Chemistry, 2020, 39(3): 791-799(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm
    [4] Qin X S, Huang G H, Chekma A, et al. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites[J]. Science of the Total Environment, 2007, 381(1): 17-37.
    [5] 张蔚, 施小清, 吴剑锋, 等. 渗透率空间变异性对重非水相流体运移的影响[J]. 高校地质学报, 2013, 19(4): 677-682. doi: 10.3969/j.issn.1006-7493.2013.04.015

    Zhang W, Shi X Q, Wu J F, et al. Impacts of the spatial variation of permeability on the transport of dense non-aqueous phase liquids in porous media[J]. Geological Journal of China Universities, 2013, 19(4): 677-682(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.04.015
    [6] Essaid H I, Bekins B A, Cozzarelli I M. Organic contaminant transportand fate in the subsurface: Evolution of knowledge and understanding[J]. Water Resources Research, 2015, 51(7): 4861-4902. doi: 10.1002/2015WR017121
    [7] Agaoglu B, Copty N K, Scheytt T, et al. Interphase mass transfer between fluids in subsurface formations: A review[J]. Advances in Water Resources, 2015, 79: 162-194. doi: 10.1016/j.advwatres.2015.02.009
    [8] 甘义群, 于凯, 周爱国, 等. 基于GasBench-IRMS的挥发性氯代烃碳氯同位素指纹特征分析[J]. 地质科技情报, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm

    Gan Y Q, Yu K, Zhou A G, et al. lsotopic fingerprint analysis of carbon and chlorine of volatile chlorinated hydrocarbons based on GasBench-IRMS[J]. Geological Science and Technology Information, 2013, 32(6): 110-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm
    [9] 张梦南, 李小倩, 周爱国, 等. 地下水中高氯酸盐来源的同位素示踪研究进展[J]. 地质科技情报, 2014, 33(4): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404027.htm

    Zhang M N, Li X Q, Zhou A G, et al. Stable chlorine and multi-oxygen isotopic tracing of perchlorate in Groundwater: A review[J]. Geological Science and Technology Information, 2014, 33(4): 177-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404027.htm
    [10] 燕永利, 陈杰, 张宁生, 等. 地下土壤、水中DNAPLs污染的修复技术研究进展[J]. 环境监测管理与技术, 2007(5): 38-42. doi: 10.3969/j.issn.1006-2009.2007.05.012

    Yan Y L, Chen J, Zhang N S, et al. Progress in the remidiation technology for underground soil and aquifer contamination by DNAPLs[J]. The Administration and Technique of Environmental Monitoring, 2007(5): 38-42(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2009.2007.05.012
    [11] 陈浙墩, 白静洁. 地下水污染治理技术的研究进展[J]. 环境与发展, 2017, 29(8): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201708051.htm

    Chen Z D, Bai J J. Research progress of groundwater pollution control technology[J]. Environmental and Development, 2017, 29(8): 87-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201708051.htm
    [12] Huo L L, Liu G S, Yang X, et al. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures[J]. Chemosphere, 2020, 252(8): 126620.
    [13] Ramsburg C A, Pennell K D, Kibbey T C G, et al. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones[J]. Journal of Contaminant Hydrology, 2004, 74(1/4): 105-131.
    [14] Talawat J, Sabatini D A, Tongcumpou C. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density-modifying agents[J]. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2013, 48: 1619-1627.
    [15] Miller C T, Hill Ⅲ E H, Moutier M. Remediation of DNAPL-contaminated subsurface systems using density motivated mobilization[J]. Environmental Science Technology, 2000, 34: 719-724. doi: 10.1021/es990808n
    [16] Hill Ⅲ E H, Moutier M, Alfaro J, et al. Remediation of DNAPL pools using dense brine barrier strategies[J]. Environmental Science Technology, 2001, 35: 3031-3039. doi: 10.1021/es001891d
    [17] Roeder E, Falta R W. Modeling unstable alcohol flooding of DNAPL-contaminated columns[J]. Advances in Water Resources, 2001, 24: 803-819. doi: 10.1016/S0309-1708(00)00072-5
    [18] Lunn S R D, Kueper B H. Risk reduction during chemical flooding: Preconditioning DNAPL density in situ prior to recovery by miscible displacement[J]. Environmental Science Technology, 1999, 33: 1703-1708. doi: 10.1021/es9804161
    [19] Ramsburg C A, Pennell K D. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: Density conversion using a partitioning alcohol[J]. Environmental Science Technology, 2002, 36: 2082-2087. doi: 10.1021/es011357l
    [20] Ramsburg C A, Pennell K D. Density-modified displacement for DNAPL source zone remediation: Density conversion and recovery in heterogeneous aquifer cells[J]. Environmental Science Technology, 2002, 36: 3176-3187. doi: 10.1021/es011403h
    [21] Ramsburg C A, Pennell K D, Kibbey T C G, et al. Use of a Aurfactantstabilized emulsion to deliver 1-butanol for density-modified displacement of trichlorothene[J]. Environmental Science Technology, 2003, 37: 4246-4253. doi: 10.1021/es0210291
    [22] Ramsburg C A, Pennell K D, Kibbey T C G, et al. Refinement of the density-modified displacement method for efficient treatment of trichlorothene source zones[J]. Journal of Contaminant Hydrology, 2004, 74: 105-131. doi: 10.1016/j.jconhyd.2004.02.008
    [23] Sie C Y, Nguyen Q P. A pore-scale experimental study of non-aqueous foam for improving hydrocarbon miscible flooding[J]. Journal of Petroleum Science and Engineering, 2020, 195(10): 107-188.
    [24] Das A, Mohanty K, Nguyen Q. A Pore-scale study of foam-microemulsion interaction during low tension gas flooding using microfluidics-tertiary recovery[J]. Journal of Petroleum Science and Engineering, 2021, 203(8): 108-196.
    [25] Lü M, Liu Z, Jia L, et al. Visualizing pore-scale foam flow in micromodels with different permeabilities-science direct[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600(9): 123-124.
    [26] Yang C, Dong J, Ren L, et al. Influencing factors on the stabilization of colloid biliquid aphrons and its effectiveness used for density modification of DNAPLs insubsurface environment[J]. Colloids Surfaces A: Physicochemical Engineering Aspects, 2018, 553: 439-445. doi: 10.1016/j.colsurfa.2018.05.093
    [27] Yang C, Offiong N A, Chen X, et al. The role of surfactants in colloidal biliquid aphrons and their transport in saturated porous medium[J]. Environmental Pollution, 2020, 265: 114564. doi: 10.1016/j.envpol.2020.114564
    [28] Yang C, Wei G, Bai J, et al. Preparation and application of polyaluminum chloride for demulsification of colloidal biliquid aphron and density modification for DNAPLs[J]. Separation and Purification Technology, 2020: 117791.
    [29] Yang C, Offiong N A, Zhang C, et al. Mechanisms of irreversible density modification using colloidal biliquid aphron for dense nonaqueous phase liquids in contaminated aquifer remediation[J]. J. Hazard Mater., 2021, 415: 125667. doi: 10.1016/j.jhazmat.2021.125667
    [30] 曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 242-252. doi: 10.19509/j.cnki.dzkq.2021.0022

    Zeng H B, Wang F R, Luo J, et al. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 242-252(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0022
    [31] 王莉, 吴珍云, 尹宏伟, 等. 含盐沉积盆地挤压盐构造及其对油气成藏的意义[J]. 地质科技通报, 2021, 40(5): 136-150. doi: 10.19509/j.cnki.dzkq.2021.0037

    Wang L, Wu Z Y, Yin H W, et al. Compressional salt structures of salt-bearing sedimentary basins and its significance to hydrocarbon accumulation[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 136-150(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0037
    [32] Surhone L M, Tennoe M T, Henssonow S F, et al. Solvent red 164[M]. [S. l.]: Betascript Publishing, 2010.
    [33] 刘雄志, 杨兆平, 惠学智, 等. 小孔剩余油受力分析及数学模型的改进[J]. 大庆石油地质与开发, 2014, 33(2): 77-82. doi: 10.3969/J.ISSN.1000-3754.2014.02.016

    Liu X Z, Yang Z P, Hui X Z, et al. Force analyses of the remained oil in the small pores and improvement of the mathematical model[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(2): 77-82(in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2014.02.016
    [34] 丁帅伟, 姜汉桥, 席怡, 等. 特高含水期剩余油微观力学成因及孔道选择机理[J]. 辽宁石油化工大学学报, 2018, 38(1): 45-49. doi: 10.3969/j.issn.1672-6952.2018.01.008

    Ding S W, Jiang H Q, Xi Y, et al. Themicro mechanical cause and pore selection mechanism of remaining oil at ultra-high water cut period[J]. Journal of Liaoning Petrochemical University, 2018, 38(1): 45-49(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6952.2018.01.008
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  408
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回