Plateau tectonic karst development characteristics and underground conduits identification in the northern part of Kangding
-
摘要: 受自然环境和技术方法制约,青藏高原岩溶发育演化和岩溶地下水循环特征研究相对薄弱,制约了青藏高原碳酸盐岩区的经济发展、民生设施建设和地质灾害防治。通过野外地质测量,岩溶地下水、地表水和大气降水水化学和同位素特征分析,泉水流量动态,水均衡计算和物探等技术方法,系统分析了四川省康定市北郊碳酸盐岩分布区的岩溶发育特征,识别了岩溶径流通道和岩溶大泉主要补给来源。结果表明:康定市北郊碳酸盐岩分布于高山峡谷地貌类型区,可溶岩地层分布、岩溶发育程度和岩溶水补给、径流、排泄均受构造控制,可溶岩与非可溶岩接触带和活动断裂附近的岩溶发育程度较强。岩溶水呈管道流径流,主要以岩溶大泉形式集中排泄,泉流量约1.5×104 m3/d且动态较为稳定。通过水文地质条件分析,识别出研究区存在通化组岩溶水径流带和雅拉河断裂岩溶水径流带。水化学-同位素数据、岩溶泉流量动态和水均衡计算结果显示,雅拉河河水是岩溶大泉的主要补给源,岩溶地下水主要沿雅拉河断裂岩溶水径流带径流并集中排泄。Abstract: Restricted by the natural environment and technical methods, the study on the evolution characteristics of karst development and the karst groundwater cycle process in the Qinghai-Xizang Plateau is relatively weak, which restricts the economic development, construction of livelihood facilities and the prevention and control of geological disasters.This paper systematically analyzes the karst development characteristics of the carbonate rock distribution area in the northern part of Kangding in Sichuan Province through the methods of geological survey, chemistry-isotope characteristics analysis of karst groundwater, surface water and precipitation water, spring water flow dynamics and water balance calculations.And the karst runoff zone was identified.The results show that the carbonate rocks in the northern part of Kangding are distributed in the alpine valley area.The distribution of karst strata, the degree of karst development, karst water supply and runoff are mainly controlled by structures.The degree of karst development on the contact zone of soluble and non-soluble rocks and the vicinity of active faults is relatively strong.The karst water flows as pipeline runoff, which is mainly discharged in the form of karst springs.The spring flow is about 1.5×104 m3/d and the flow dynamics are relatively stable.Through the analysis of hydrogeological conditions, the karst water runoff zone of the Tonghua Formation and the karst water runoff zone of the Yala River fault have been identified.Hydrochemistry-isotopic data, karst spring flow dynamics and water balance calculation results show that Yala River water is the main source of replenishment for large karst springs.Karst groundwater mainly flows downstream along the karst water runoff zone of the Yala River fault and is discharged in a concentrated manner.
-
图 5 瞬变电磁法物探剖面图(剖面位置见图 1)
Figure 5. Geophysical profile of transient electromagnetic
图 8 水样δD和δ18O关系图(GMWL,Global Meteoric Water Line,全球大气降水线;LMWL,Local Meteoric Water Line,区域大气降水线,引自文献[30])
Figure 8. Relation diagram of δD versus δ18O of water samples
表 1 研究区主要地层岩性
Table 1. Stratigraphic lithology in the study area
地层年代 群组 代号 厚度/m 岩性 全新统 Q4 0~40 崩坡积、冲洪积砂砾石、含砾砂泥层 二叠系 大石包组 P3d 472~2 451 炭质板岩、中-基性火山碎屑岩 三道桥组 P2s 76 含泥质结晶灰岩、生物碎屑灰岩,中下部夹含砾石英砂岩、板岩 石炭系 雪宝顶组 DCx 40~148 下部为片理化硅质结晶灰岩,上部为结晶灰岩与砂质结晶灰岩互层 泥盆系 危关组 Dw 600~4 898 下部以炭硅质板岩为主,上部以粉砂质板岩为主,夹结晶灰岩、生物碎屑灰岩 志留系 茂县群 SM 432 下部为绢云千枚岩,中上部为白云岩 通化组 St2-3 500~2 000 结晶灰岩、泥质条带结晶灰岩、大理岩 通化组 St1 113~581 二云片岩、黑云片岩为主,夹炭质板岩、大理岩 震旦系 水晶组 Z2s 107~1 115 白云岩、白云质大理岩、结晶灰岩 蜈蚣口组 Z2w 35~364 千枚岩、石英岩、凝灰质砂岩,夹少量白云岩、白云质灰岩 康定杂岩体 花岗岩、角闪岩、闪长岩等 表 2 研究区岩溶泉出露高程与流量(2021年5月)
Table 2. Altitude and flow rate(in May, 2021) of karst springs in the study area
编号 出露高程/m 流量/(m3·d-1) PM01 2 455 3 939.8 PM02 2 450 10 558.1 PM10 3 920 5.0 PM11 3 522 5.5 PM27 2 528 190.1 PM29 2 478 43.2 PM33 2 471 34.3 SNC 3 080 60.5 表 3 水化学与同位素测试结果
Table 3. Test results of hydrochemical components and isotopes
水体类型 数据项 水化学指标* 同位素指标 K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- TDS pH δ2H/‰ δ18O/‰ ρB/(mg·L-1) 岩溶泉 最大值 3.02 9.72 76.32 23.13 2.44 85.46 237.50 319.00 8.45 -101.00 -14.20 最小值 0.21 0.79 30.88 6.55 1.74 4.34 118.50 133.00 7.14 -115.00 -15.90 平均值 1.15 3.71 46.01 13.42 1.89 32.80 169.18 193.19 7.68 -107.13 -14.95 温泉** 最大值 30.30 316.00 267.80 49.40 75.60 116.50 1 202.00 1 299.00 7.50 -113.00 -14.30 最小值 14.80 144.80 20.50 1.40 45.41 1.60 403.00 440.00 6.40 平均值 22.17 214.28 77.17 19.71 57.24 45.73 753.43 788.17 6.87 地表水 最大值 1.94 10.60 43.60 6.79 2.79 57.39 123.80 175.10 7.62 -89.00 -12.80 最小值 0.03 0.06 1.13 0.24 0.05 0.08 1.16 37.62 7.12 -113.00 -15.70 平均值 1.00 4.43 20.21 3.96 1.58 14.93 74.17 106.29 7.37 -106.67 -14.92 雨水 0.26 0.20 1.21 < 0.013 1.75 1.61 11.96 13.54 6.42 -71.00 -10.40 积雪 0.93 3.18 8.89 1.17 6.01 1.57 30.80 40.00 6.86 -116.00 -15.80 注:: *, ** 统计了文献[29]测试数据 表 4 大气降水入渗补给量计算结果
Table 4. Calculationresult of replenishment of atmospheric precipitation infiltration
计算单元 地表水分水岭与地下水分水岭一致 地表水分水岭与地下水分水岭不一致 面积/km2 降水量/mm 入渗系数 补给量/(m3·d-1) 面积/km2 降水量/mm 入渗系数 补给量/(m3·d-1) St3分布区 2.84 850.8 0.10 662 5.43 850.8 0.10 1 266 St2分布区 5.75 850.8 0.25 3 351 10.10 850.8 0.25 5 874 St1分布区 2.40 850.8 0.03 168 3.88 850.8 0.03 271 Z2s分布区 3.40 850.8 0.20 1 585 3.92 850.8 0.20 1 827 总计 - 5 766 - 9 239 -
[1] 蒋忠诚, 覃小群, 曹建华, 等. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 2011, 30(4): 364-367. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201104002.htmJiang Z C, Qin X Q, Cao J H, et al. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica, 2011, 30(4): 364-367(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201104002.htm [2] 康小兵, 杨四福, 管振德, 等. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 2021, 40(3): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103002.htmKang X B, Yang S F, Guan Z D, et al. Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau[J]. Carsologica Sinica, 2021, 40(3): 381-388(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103002.htm [3] 高全洲, 陶贞, 崔之久, 等. 青藏高原古岩溶的性质、发育时代和环境特征[J]. 地理学报, 2002, 57(3): 267-274. doi: 10.3321/j.issn:0375-5444.2002.03.002Gao Q Z, Tao Z, Cui Z J, et al. The nature, formation age and genetic environment of the palaeokarst on the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 2002, 57(3): 267-274(in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.2002.03.002 [4] 章典, 师长兴. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 2002, 76(4): 566-570. doi: 10.3321/j.issn:0001-5717.2002.04.013Zhang D, Shi C X. CO2 partial pressure, karst dissolution rate and karst micro-landforms on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2002, 76(4): 566-570(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.04.013 [5] 高全洲, 崔之久, 刘耕年, 等. 青藏高原洞穴次生方解石的裂变径迹年代及地貌学意义[J]. 海洋地质与第四纪地质, 2000, 20(3): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200003012.htmGao Q Z, Cui Z J, Liu G N. The fission track ages of the cavernous recrystalline calcites in Tibet Plateau and their geomorphologic significance[J]. Marine Geology & Quaternary Geology, 2000, 20(3): 61-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200003012.htm [6] 崔之久. 青藏高原的古岩溶[J]. 自然杂志, 1979(9): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ197909011.htmCui Z J. Paleokarst in the Qinghai-Tibet Plateau[J]. Chinese Journal of Nature, 1979(9): 24-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ197909011.htm [7] 李向全, 马剑飞, 张春潮, 等. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 2021, 48(5): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105004.htmLi X Q, Ma J F, Zhang C C, et al. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 34-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105004.htm [8] 崔之久, 刘耕年, 李德文, 等. 覆盖型岩溶、风化壳与岩溶(双层)夷平面[J]. 中国科学: 地球科学, 2001, 31(6): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200106009.htmCui Z J, Liu G N, Li D W, et al. Overburden karst, weathered crust and karst(double layer) planation[J]. Science in China: Earth Science, 2001, 31(6): 510-519(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200106009.htm [9] 许模, 毛邦燕, 张广泽, 等. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报: 自然科学版, 2020, 47(6): 724-732. doi: 10.3969/j.issn.1671-9727.2020.06.09Xu M, Mao B Y, Zhang G Z, et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qing-Tibet Plateau, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2020, 47(6): 724-732(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2020.06.09 [10] 梁明剑, 陈立春, 冉永康, 等. 鲜水河断裂带雅拉河段晚第四纪活动性[J]. 地震地质, 2020, 42(2): 514-525.Liang M J, Chen L C, Ran Y K, et al. Late-Quaternary activity of the Yalahe fault of the Xianshuihe fault zone, eastern margin of the Tibet Plateau[J]. Seismology and Geology, 2020, 42(2): 514-525(in Chinese with English abstract). [11] 潘家伟, 李海兵, Marie-Luce C, 等. 鲜水河断裂带色拉哈—康定段新发现的活动断层: 木格措南断裂[J]. 地质学报, 2020, 94(11): 3178-3188. doi: 10.3969/j.issn.0001-5717.2020.11.002Pan J W, Li H B, Marie-Luce, et al. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: The South Mugecuo fault[J]. Acta Geologica Sinica, 2020, 94(11): 3178-3188(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.11.002 [12] 张大泉. 鲜水河断裂带附近地区的区域地貌特征[J]. 西南师范大学学报, 1990, 15(3): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK199003024.htmZhang D Q. The regionally gemorphical features of the area of the Xianshuihe fault belt stretching of western Sichuan, China[J]. Journal of Southwest Teachers University, 1990, 15(3): 413-420(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK199003024.htm [13] Guo C, Montgomery D R, Zhang Y, et al. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geomorphology, 2015, 248(1): 93-110. [14] 冯涛, 刘建国, 游勇, 等. 川藏铁路郭达山隧道受泥石流影响分析与防治[J]. 铁道建筑, 2020, 60(11): 80-83. doi: 10.3969/j.issn.1003-1995.2020.11.20Feng T, Liu J G, You Y, et al. Analysis and Prevention Measures Against Debris Flow for Guodashan Mountain Tunnel of Sichuan-Tibet Railway[J]. Railway Engineering, 2020, 60(11): 80-83(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1995.2020.11.20 [15] 王哲威, 徐正宣, 冯涛, 等. 川藏铁路鲜水河构造带地质选线研究[J]. 工程地质学报, 2021, 29(2): 466-477. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102016.htmWang Z W, Xu Z X, Feng T, et al. Geological line selection of Xianshuihe structural zone of Sichuan-Tibet Railway[J]. Journal of Engineering Geology, 2021, 29(2): 466-477(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102016.htm [16] 熊探宇, 姚鑫, 张永双. 鲜水河断裂带全新世活动性研究进展综述[J]. 地质力学学报, 2010, 16(2): 176-188. doi: 10.3969/j.issn.1006-6616.2010.02.007Xiong T Y, Yao X, Zhang Y S. A review on study of activity of Xianshuihe fault zone since the holocene[J]. Journal of Geomechanics, 2010, 16(2): 176-188(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2010.02.007 [17] 秦宇龙, 吴建亮, 詹涵钰, 等. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报, 2021, 27(3): 463-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202103012.htmQin Y L, Wu J L, Zhan H Y, et al. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan Province, China[J]. Journal of Geomechanics, 2021, 27(3): 463-474(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202103012.htm [18] 杨忠平, 蒋源文, 李滨, 等. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 2020, 26(4): 459-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004003.htmYang Z P, Jiang Y W, Li B, et al. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics, 2020, 26(4): 459-470(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004003.htm [19] 张俊锋, 李强, 史永跃, 等. 西南某隧道岩溶水发育规律及涌水量预测[J]. 现代隧道技术, 2021, 58(2): 14-21, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202102004.htmZhang J F, Li Q, Shi Y Y, et al. On Developmentlaw of karst water and prediction of water inflow in a tunnel in Southwest China[J]. Modern Tunnelling Technology, 2021, 58(2): 14-21, 50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202102004.htm [20] 罗鉴银, 傅瓦利. 岩溶地区开凿隧道对地下水循环系统的破坏: 以重庆市中梁山为例[J]. 西南农业大学学报: 自然科学版, 2005, 27(4): 432-435. doi: 10.3969/j.issn.1673-9868.2005.04.002Lou J Y, Fu W L. Destruction caused by tunnelling works to the circulatory system of underground water in karst areas: A case study of the Zhongliang Mountain in Chongqing[J]. Journal of Southwest Agricultural University: Natural Science Edition, 2005, 7(4): 432-435(in Chinese with English abstract). doi: 10.3969/j.issn.1673-9868.2005.04.002 [21] 赵瑜, 胡波, 陈海林, 等. 岩溶隧道工程修建对地下水环境的影响[J]. 土木建筑与环境工程, 2018, 40(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805001.htmZhao Y, Hu B, Chen H L, et al. Impact of tunnel engineering on groundwater environment in karst area[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(5): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805001.htm [22] Torre B, Mudarra M, Andreo B. Investigating karst aquifers in tectonically complex alpine areas coupling geological and hydrogeological methods[J]. Journal of Hydrology, 2020, 6: 100047. [23] Chen J, Qian H, Gao Y, et al. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions : Science Direct[J]. Journal of Hydrology, 2020, 581: 123486. [24] Jia H, Howard K, Qian H. Use of multiple isotopic and chemical tracers to identify sources of nitrate in shallow groundwaters along the northern slope of the Qinling Mountains, China[J]. Applied Geochemistry, 2020, 113: 104512. doi: 10.1016/j.apgeochem.2019.104512 [25] Liu P, Wu Z, Luo X, et al. Pollution assessment and source analysis of heavy metals in acidic farmland of the karst region in southern China: A case study of Quanzhou County[J]. Applied Geochemisry, 2020, 123: 104764. doi: 10.1016/j.apgeochem.2020.104764 [26] Razum I, Miko S, Ilijanic N, et al. A compositional approach to the reconstruction of geochemical processes involved in the evolution of Holocene marine flooded coastal karst basins(Mljet Island, Croatia)[J]. Applied Geochemistry, 2020, 116: 104574. doi: 10.1016/j.apgeochem.2020.104574 [27] 武亚遵, 潘春芳, 林云, 等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报, 2018, 37(5): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htmWu Y Z, Pan C F, Lin Y, et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China coalfield[J]. Geological Science and Technology Information, 2018, 37(5): 191-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htm [28] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106027.htmLuo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106027.htm [29] Guo L, Wang G, Sheng Y, et al. Temperature governs the distribution of hot spring microbial community in three hydrothermal fields, Eastern Tibetan Plateau Geothermal Belt, Western China[J]. Science of the Total Environment, 2020, 720: 137574. doi: 10.1016/j.scitotenv.2020.137574 [30] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11): 1860-1869. doi: 10.11870/cjlyzyyhj201511008Song C L, Sun X Y, Wang G X. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga Mountain, China[J]. Resources and Environment in the Yangtze Basin, 2015, 24(11): 1860-1869(in Chinese with English abstract). doi: 10.11870/cjlyzyyhj201511008 [31] 罗明明, 黄荷, 尹德超, 等. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htmLuo M M, Huang H, Yin D C, et al. Source identification of water inrush in the Xiakou Tunnel based on hydrochemistry and hydrogen-oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 7-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm [32] 刘伟江, 袁祥美, 张雅, 等. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报, 2018, 37(6): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htmLiu W J, Yuan X M, Zhang Y, et al. Hydrochemical characteristics and evolution of karst groundwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6): 245-251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm [33] Fatemeh B, Gholam H K, Rahim B, et al. Geochemical and multi-isotopes(δ18O, δ2H, δ13C, 3H and δ37Cl) evidences to karst development and flow directions in transboundary aquifer, Northeast of Iran[J]. Applied Geochemistry, 2021, 132: 105071. doi: 10.1016/j.apgeochem.2021.105071 [34] 赵良菊, 阮云峰, 肖洪浪, 等. 氚同位素在黑河流域水循环研究中的应用[J]. 第四纪研究, 2014, 34(5): 959-972. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201405006.htmZhao L J, Ruan Y F, Xiao H L, et al. Application of radioactive trituium isotope in studying water cycle of the Heihe River basin[J]. Quaternary Sciences, 2014, 34(5): 959-972(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201405006.htm [35] 邓争荣, 吴树良, 杨友刚, 等. 同位素方法在判定某水电站坝址河床承压水补给源中的应用[J]. 资源环境与工程, 2012, 26(5): 505-508. doi: 10.3969/j.issn.1671-1211.2012.05.021Deng Z R, Wu S L, Yang Y G, et al. Application of isotopes method on judging supplied source of confined groundwater in riverbed at the dam site of a hydropower station[J]. Resources Environment & Engineering, 2012, 26(5): 505-508(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1211.2012.05.021