Quantitative risk analysis of toppling slope considering seismic risk
-
摘要: 风险分析与评估是解决边坡固有不确定性的重要工具, 但同时考虑外在荷载和内在岩土力学参数的不确定性, 对边坡进行系统定量风险分析的研究较少。以西藏扎拉水电站厂后倾倒变形边坡为例, 基于场地地震峰值加速度概率密度函数和不同地震峰值加速度下边坡失稳概率拟合函数, 采用数值积分计算了边坡在设计基准期的失稳概率, 并采用离散元方法对边坡失稳后的影响范围进行了数值模拟, 在此基础上进行了承灾体易损性分析及定量风险计算, 最后采用ALARP准则进行了风险评价。研究表明, 考虑地震危险性条件下, 扎拉水电站厂后倾倒变形边坡在50 a设计基准期内失稳概率为0.061 9;边坡对水电站地面厂房存在较大威胁, 相应财产风险为5 482万元; 根据ALARP准则, 边坡风险处于不可接受区, 需采取措施防范或规避风险。研究成果对于边坡治理工程决策及风险管理具有指导意义。Abstract: Risk analysis and assessment are important tools to solve the inherent uncertainty of slopes. At present, there are few studies on systematic quantitative risk analysis of slopes considering the uncertainty of external load and internal geotechnical mechanical parameters at the same time. This paper takes the toppling slopebehind the power plant of the Zhala hydropower station in Tibet as an example. Based on the probability density function (PDF) of site seismic peak acceleration and the fitting function of slope failure probability under different seismic peak accelerations, the overall slope failure probability is calculated by numerical integration, and the influence range of the slope is simulated by the discrete element method (DEM). Then, vulnerability analysis and quantitative risk calculation of elements at risk are carried out. Finally, the ALARP criterion is used for risk assessment. The results show that, considering the seismic risk, the failure probability of the slope is 0.061 9 in the 50-year design reference period. The slope poses a great threat to the ground powerhouse of hydropower stations, and the corresponding economic risk is 54.82 million RMB. According to the ALARP criterion, the slope risk is in the unacceptable area, and measures should be taken to prevent or avoid the risk. The research results have guiding significance for decision-making and risk management of slope treatment engineering.
-
Key words:
- seismic risk /
- toppling slope /
- instability probability /
- vulnerability /
- quantitative risk analysis
-
图 8 边坡经济风险评价(底图引自文献[40])
Figure 8. Economy risk assessment of slope
表 1 底弯面抗剪强度参数
Table 1. Mechanical parameters of the bottom sliding surface
抗剪强度参数 分布类型 均值 标准差 黏聚力/MPa 正态分布 0.33 0.03 内摩擦角/(°) 正态分布 31 2 表 2 结构面力学参数
Table 2. Mechanical parameters of the structural planes
结构面 法向刚度/(GPa·m-1) 剪切刚度/(GPa·m-1) 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 岩层面 1.0 0.8 0.10 26 0.20 节理面 1.7 0.9 0.45 34 0.50 底弯面 1.5 0.9 0.33 31 0.17 表 3 承灾体参数汇总
Table 3. Summary of parameters of hazard bearing
承灾体 P(T|L) P(S|T) V(prop|S) E/万元 备注 公路 1.0 1.0 1.0 75 地面厂房建筑 1.0 1.0 0.3 64 700 发电设备 1.0 1.0 0.1 90 800 发电收益 1.0 1.0 1.0 60 000 按6个月计算 注:参数含义见式(1)说明 -
[1] 张丙先. 西藏玉曲河下游岸坡倾倒变形机制及稳定性分析[J]. 吉林大学学报: 地球科学版, 2018, 48(5): 1539-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201805047.htmZhang B X. Deformation mechanism and stability analysis of bank slope in downstream of Yuqu River in Tibet[J]. Journal of Jilin University: Earth Science Edition, 2018, 48(5): 1539-1545(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201805047.htm [2] 吴益平, 卢里尔, 薛阳. 基于临界状态的边坡渐进破坏力学模型分析及应用[J]. 地质科技通报, 2020, 39(5): 1-7. doi: 10.19509/j.cnki.dzkq.2020.0501Wu Y P, Lu L E, Xue Y. Application of landslide progressive failure mechanical model based on the critical stress state[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 1-7(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0501 [3] 郑迎凯, 陈建国, 王成彬, 等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报, 2020, 39(6): 131-144. doi: 10.19509/j.cnki.dzkq.2020.0616Zheng Y K, Chen J G, Wang C B, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City, Yunnan Province[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131-144(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0616 [4] Dai F C, Lee C F, Ngai Y Y. Landslide risk assessment and management: An overview[J]. Engineering Geology, 2002, 64: 65-87. doi: 10.1016/S0013-7952(01)00093-X [5] 吴树仁, 石菊松, 王涛, 等. 滑坡风险评估理论与技术[M]. 北京: 科学出版社, 2012.Wu S R, Shi J S, Wang T, et al. Theory and technology of landslide risk assessment[M]. Beijing: Science Press, 2012(in Chinese). [6] Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology, 2008, 102(3/4): 85-98. [7] 殷坤龙, 张桂荣, 陈丽霞, 等. 滑坡灾害风险分析[M]. 北京: 科学出版社, 2010.Yin K L, Zhang G R, Chen L X, et al. Risk analysis of landslide disaster[M]. Beijing: Science Press, 2010 (in Chinese). [8] Glade T, Nadim F. Early warning systems for natural hazards and risks[J]. Natural Hazards, 2014, 70: 1669-1671. doi: 10.1007/s11069-013-1000-8 [9] Corominas J, van Westen C J, Frattini P, et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment, 2014, 73(2): 209-263. [10] Fan X M, Scaringi G, Korup O, et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 2019, 57(2): 421-503. doi: 10.1029/2018RG000626 [11] Li D Q, Xiao T, Cao Z J, et al. Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation[J]. Landslides, 2016, 13(2): 293-303. doi: 10.1007/s10346-015-0569-2 [12] Wang Y, Cao Z, Au S K. Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet[J]. Canadian Geotechnical Journal, 2011, 48(1): 162-172. doi: 10.1139/T10-044 [13] 赵文斌, 罗文强, 冯永. 基于Monte-Carlo模拟的狮子包边坡稳定性研究[J]. 地质科技情报, 2006, 25(6): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200606017.htmZhao W B, Luo W Q, Feng Y. Stability of Shizibao slope based on Monte-Carlo simulation[J]. Geological Science and Technology Information, 2006, 25(6): 96-98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200606017.htm [14] Low B K, Tang W H. Efficient spreadsheet algorithm for first-order reliability method[J]. Journal of Engineering Mechanics, 2007, 133(12): 1378-1387. doi: 10.1061/(ASCE)0733-9399(2007)133:12(1378) [15] Li D Q, Zheng D, Cao Z, et al. Response surface methods for slope reliability analysis: Review and comparison[J]. Engineering Geology, 2016, 203: 3-14. doi: 10.1016/j.enggeo.2015.09.003 [16] Xiao T, Li D Q, Cao Z J, et al. Three-dimensional slope reliability and risk assessment using auxiliary random finite element method[J]. Computers and Geotechnics, 2016, 79(10): 146-158. [17] Tsuyoshi H, Hiromu M. Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides[J]. Geomorphology, 2009, 103(3): 447-454. doi: 10.1016/j.geomorph.2008.07.009 [18] 陈丽霞, 殷坤龙, 汪洋. 单体滑坡灾害风险预测[J]. 自然灾害学报, 2008, 17(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200802013.htmChen L X, Yin K L, Wang Y. Discussion on risk prediction for single landslide[J]. Journal Of Natural Disasters, 2008, 17(2): 65-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200802013.htm [19] Zou Z, Xiong C, Tang H, et al. Prediction of landslide runout based on influencing factor analysis[J]. Environ. Earth Sci., 2017, 76: 1-17. doi: 10.1007/s12665-016-6304-z [20] 黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. doi: 10.19509/j.cnki.dzkq.2021.0111Huang S P, Yan E C, Yin X M, et al. The action law of geometrical characteristic parameters in the anti-dip rock slopes under different free face condition[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 159-1658(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0111 [21] Wu J H, Hsieh P H. Simulating the postfailure behavior of the seismically-triggered Chiu-fen-erh-shan landslide using 3DEC[J]. Engineering Geology, 2021, 287: 106113. doi: 10.1016/j.enggeo.2021.106113 [22] 吴越, 刘东升, 李明军. 岩体滑坡冲击能计算及受灾体易损性定量评估[J]. 岩石力学与工程学报, 2011, 30(5): 901-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105006.htmWu Y, Liu D S, Li M J. Impact energy calculation for rock slope and quantitative assessment of vulnerability for element at risk[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 901-909(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105006.htm [23] 陈旭丹, 孙新利, 程金星, 等. 单体滑坡灾害承灾体的有限元模拟与易损性评估[J]. 长江科学院院报, 2015, 32(9): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201509016.htmChen X D, Sun X L, Cheng J X, et al. Finite element simulation and vulnerability assessment for bearing body caused by single landslide[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(9): 69-75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201509016.htm [24] Perera E N C, Jayawardana D T, Jayasinghe P. Landslide vulnerability assessment based on entropy method: A case study from Kegalle district, Sri Lanka[J]. Modeling Earth Systems and Environment, 2019, 5: 1635-1649. [25] Guo Z Z, Chen L X, Yin K L, et al. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China[J]. Engineering Geology, 2020, 273: 105667. [26] 林阿娜, 王浩, 颜斌, 等. 邻近输电塔路堑边坡失稳风险定量评估及加固工程设计优化[J]. 中国地质灾害与防治学报, 2019, 30(2): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201902004.htmLin A N, Wang H, Yan B, et al. Quantitative risk assessment of the highway cutting slopes in adjacent transmission lines and design optimization for the reinforcement works[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 19-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201902004.htm [27] 吴昊城, 王浩, 黄晓毅, 等. 超高路堑边坡施工过程的定量风险评估[J]. 公路交通科技, 2020, 37(7): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007007.htmWu H C, Wang H, Huang X Y, et al. Quantitative risk assessment of ultra-high cut slope during construction[J]. Journal of Highway and Transportation Research and Development, 2020, 37(7): 45-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007007.htm [28] Fell R, Ho K K S, Lacasse S, et al. A frame work for landslide risk assessment and management[C]//Hunger O, Fell R, Couture R, et al. Proceedings of the International Conference on Landslide Risk Management, Vancouver. London: Taylor & Francis Group, 2005: 3-25. [29] 贾超, 刘宁, 陈进. 地震作用下土坡可靠度风险分析[J]. 岩石力学与工程学报, 2005, 24(4): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200504029.htmJia C, Liu N, Chen J, et al. Slope risk analysis under the earthquake effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 703-707(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200504029.htm [30] 马玉宏, 赵桂峰. 地震灾害风险分析及管理[M]. 北京: 科学出版社, 2008.Ma Y H, Zhao G F, et al. Earthquake disaster risk analysis and management[M]. Beijing: Science Press, 2008(in Chinese). [31] 高小旺, 鲍蔼斌. 地震作用的概率模型及其统计参数[J]. 地震工程与工程振动, 1985, 5(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198501001.htmGao X W, Bao A B. Probabilistic model and its statistical Parameters for seismic load[J]. Earthquake Engineering and Engineering Viberation, 1985, 5(1): 13-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198501001.htm [32] 黄振伟, 张丙先, 潘坤, 等. 西藏玉曲河扎拉水电站可行性研究报告: 工程地质分册[R]. 武汉: 长江勘测规划设计研究有限责任公司, 2018.Huang Z W, Zhang B X, Pan K, et al. Feasibility study report of Zhala Hydropower Station on Yuqu River in Tibet: Engineering geology[R]. Wuhan: CISPDR Corporation, 2018 (in Chinese). [33] 黄振伟, 肖东佑. 西藏扎拉水电站倾倒变形边坡稳定性分析与评价[J]. 人民长江, 2019, 20(12): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201912017.htmHuang Z W, Xiao D Y. Toppling stability analysis and evaluation on toppling slope of Zhala Hydropower Station in Tibet[J]. Yangtze River, 2019, 20(12): 90-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201912017.htm [34] GEO-SLOPE International Ltd. Stability modeling with SLOPE/W 2007 version[R]. Alberta: GEO-SLOPE International Ltd., 2008. [35] 郭子正, 殷坤龙, 唐扬, 等. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J]. 地质科技情报, 2017, 36(4): 260-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htmGuo Z Z, Yin K L, Tang Y, et al. Stability evaluation and prediction of Maliulin Landslide under reservoir water level decline and rainfall[J]. Geological Science and Technology Information, 2017, 36(4): 260-265(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm [36] 中华人民共和国电力行业标准. 水电水利工程边坡设计规范: DL/T5353-2006[S]. 北京: 中国电力出版社, 2006.Electric Power Industry Standard of the People's Republic of China. Design specification for slope of hydropower and water conservancy project: DL/T5353-2006[S]. Beijing: China Electric Power Press, 2006(in Chinese). [37] Itasca Consulting Group Inc. Universal distinct element code (version 7.0) user's guide[R]. Minneapolis: Itasca Consulting Group, Inc., 2020. [38] 唐亚明, 冯卫, 李政国, 等. 滑坡风险管理综述[J]. 灾害学, 2015, 30(1): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201501027.htmTang Y M, Feng W, Li Z G, et al. An overview of landslide risk management[J]. Journal of Catastrophology, 2015, 30(1): 141-149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201501027.htm [39] Fell R. Landslide risk assessment and acceptable risk[J]. Canadian Geotechnical Journal, 1994, 31: 261-272. [40] 李东升. 基于可靠度理论的边坡风险评价研究[D]. 重庆: 重庆大学, 2006.Li D S. Slope engineering risk assessment based on reliability theory[D]. Chongqing: Chongqing University, 2006(in Chinese with English abstract). [41] 王浩, 豆红强, 谢永宁, 等. 路堑边坡全寿命周期风险评估及管理的技术框架[J]. 岩土力学, 2017, 38(12): 3505-3516. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712016.htmWang H, Dou H Q, Xie Y N, et al. A technical framework for life cycle risk assessment and management of highway cut slopes[J]. Rock and Soil Mechanics, 2017, 38(12): 3505-3516(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712016.htm [42] 罗文强, 张倬元, 黄润秋. 边坡系统稳定性的可靠性研究[J]. 地质科技情报, 1999, 18(2): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ902.019.htmLuo W Q, Zhang Z Y, Huang R Q. Research on stability of slope system in reliability theory[J]. Geological Science and Technology Information, 1999, 18(2): 62-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ902.019.htm [43] Li D Q, Jiang S H, Chen Y F, et al. System reliability analysis of rock slope stability involving correlated failure modes[J]. KSCE Journal of Civil Engineering, 2011, 15(8): 1349-1359. [44] Johari A, Mehrabani L A. System probabilistic model of rock slope stability considering correlated failure modes[J]. Computers and Geotechnics, 2017, 81(1): 26-38.