留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盆地多级次地下水流系统盐分运移实验模拟

牛宏 魏小雅 林晶晶 王俊智 尼胜楠 李姝姿

牛宏, 魏小雅, 林晶晶, 王俊智, 尼胜楠, 李姝姿. 盆地多级次地下水流系统盐分运移实验模拟[J]. 地质科技通报, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019
引用本文: 牛宏, 魏小雅, 林晶晶, 王俊智, 尼胜楠, 李姝姿. 盆地多级次地下水流系统盐分运移实验模拟[J]. 地质科技通报, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019
Niu Hong, Wei Xiaoya, Lin Jingjing, Wang Junzhi, Ni Shengnan, Li Shuzi. Experimental simulation of salt transport in hierarchically nested groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019
Citation: Niu Hong, Wei Xiaoya, Lin Jingjing, Wang Junzhi, Ni Shengnan, Li Shuzi. Experimental simulation of salt transport in hierarchically nested groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019

盆地多级次地下水流系统盐分运移实验模拟

doi: 10.19509/j.cnki.dzkq.2022.0019
基金项目: 

国家自然科学基金项目 41807186

国家自然科学基金项目 41902245

国家自然科学基金项目 42004071

中南民族大学中央高校项目 CZQ21015

详细信息
    作者简介:

    牛宏(1988-), 男, 讲师, 主要从事地下水流系统模拟和水文与水资源教学和科研工作。E-mail: niuhong@scuec.edu.cn

  • 中图分类号: P641

Experimental simulation of salt transport in hierarchically nested groundwater flow systems

  • 摘要: 地下水年龄和滞留时间包含了地下水循环和演化的重要信息,被广泛用于盆地地下水循环模式的研究。使用多级次地下水流系统演示仪,实验模拟了三级水流系统模式中地下水年龄及滞留时间分布。研究发现,盆地底部、区域流线的下游、盆地滞留区最晚响应;浅部的局部水流系统稳定后的浓度值相对较低;中间水流系统相对深部的区域水流系统也较低,滞留区盐分积累,浓度值相对较大。盆地内部所有监测点的地下水年龄分布曲线都为单峰,区域水流系统的循环时间大于中间水流系统以及局部水流系统。在排泄区监测的滞留时间分布显示不同级次补给会产生早、中、晚峰,并且峰值与地下水流系统的级次性完全对应,可以通过排泄区的峰值判断地下水是从局部、中间或区域水流系统补给而来,以此判断污染物的来源。本研究成果对于地下水的循环演化和地下水流系统理论的完善具有一定的意义。

     

  • 图 1  地下水流系统演示仪

    Figure 1.  Groundwater flow system demonstrator

    图 2  红墨水示踪得到的多级次盆地地下水流系统

    R.区域水流系统; I.中间水流系统; L.局部水流系统,数字表示局部水流系统的编号

    Figure 2.  Groundwater flow system of multi-stage basin obtained by red ink tracing

    图 3  多级次盆地地下水流系统中主要监测点的浓度变化

    图中数字表示不同的监测点编号

    Figure 3.  Concentration variation of the main monitoring points in groundwater flow system of multi-stage basin

    图 4  多级次盆地地下水流系统中各监测点稳定后的浓度分布

    图中数字表示标准化浓度,色块表示滞留区范围

    Figure 4.  Stable concentration distribution of each monitoring point in groundwater flow system of multi-stage basin

    图 5  多级次盆地地下水流系统中主要监测点的地下水年龄分布

    图中数字表示不同的监测点编号

    Figure 5.  Groundwater age distribution of the main monitoring sites in groundwater flow system of multi-stage basin

    图 6  盆地多级次地下水流系统中地下水年龄分布密度函数峰值对应的时间

    Figure 6.  Time corresponding to the peak of the density function of groundwater age distribution in groundwater flow system of multi-stage basin

    图 7  多级次盆地地下水流系统从不同的补给区释放盐分得到的排泄区滞留时间分布

    a.上中下游补给区同时释放盐分;b.上游补给区单独释放盐分;c.中游补给区单独释放盐分;d.下游补给区单独释放盐分;DZ1.上游排泄区;DZ2.中游排泄区;DZ3.下游排泄区

    Figure 7.  Distribution of residence time in discharge zones obtained from the release of salts from different recharge zones in groundwater flow system

  • [1] Alley W M, Healy R W, LaBaugh J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296: 1985-1990. doi: 10.1126/science.1067123
    [2] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [3] 孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别: 研究进展、面临挑战及未来研究展望[J]. 地质科技通报, 2020, 39(1): 11-20. doi: 10.19509/j.cnki.dzkq.2020.0102

    Sun Z Y, Wang J Y, Ge M Y, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation: Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 11-20(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0102
    [4] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [5] Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [6] Haitiema H M, Sherry M B. Are water tables a subdued replica of the topography?[J]. Groundwater, 2005, 43(6): 781-786.
    [7] Gill B, Webb J, Stott K, et al. Economic, social and resource management factors influencing groundwater trade: Evidence from Victoria, Australia[J]. Journal of Hydrology, 2017, 550: 253-267. doi: 10.1016/j.jhydrol.2017.04.055
    [8] Gejl R N, Rygaard M, Henriksen H J, et al. Understanding the impacts of groundwater abstraction through long-term trends in water quality[J]. Water Research, 2019, 156: 241-251. doi: 10.1016/j.watres.2019.02.026
    [9] Shrestha S, Semkuyu D J, Pandey V P, et al. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal[J]. Science of the Total Environment, 2016, 556: 23-35. doi: 10.1016/j.scitotenv.2016.03.021
    [10] Zijl W, Mustafa E R. The evolution from an unsteady to a steady mixing zone between two groundwater flow systems with different concentrations[J]. Alexandria Engineering Journal, 2019, 58(2): 725-731. doi: 10.1016/j.aej.2019.06.003
    [11] 蒋小伟, 万力, 王旭升, 等. 盆地地下水年龄空间分布规律[J]. 水文地质工程地质, 2012, 39(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204003.htm

    Jiang X W, Wan L, Wang X S, et al. Distribution of groundwater age in drainage basins[J]. Hydrogeology & Engineering Geology, 2012, 39(4): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204003.htm
    [12] 王俊智. 盆地多级次地下水流系统识别方法研究[D]. 北京: 中国地质大学(北京), 2015.

    Wang J Z. A methodological study on the identification of hierarchically nested groundwater flow systems in drainage basins[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract).
    [13] Liang X, Liu Y, Jin M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573. doi: 10.1002/hyp.7758
    [14] 梁杏, 牛宏, 张人权, 等. 盆地地下水流模式及其转化与控制因素[J]. 地球科学: 中国地质大学学报, 2012, 37(2): 269-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm

    Liang X, Niu H, Zhang R Q, et al. Basinal groundwater flow patterns and their transformation and dominant factors[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(2): 269-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm
    [15] Liang X, Quan D J, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 2013, 27(24): 3475-3483. doi: 10.1002/hyp.9477
    [16] Wang J Z, Wörman A, Bresciani E, et al. On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems[J]. Journal of Hydrology, 2016, 543: 47-58. doi: 10.1016/j.jhydrol.2016.04.034
    [17] Cardenas M B. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow[J]. Geophysical Research Letters, 2007, 34(5): 1-5.
    [18] Cardenas M B, Jiang X W. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity[J]. Water Resources Research, 2010, 46(11): 1-9.
  • 加载中
图(7)
计量
  • 文章访问数:  503
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回