留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地多级次地下水流系统中硝酸盐分布特征及其成因

张晓旭 周爱国 刘运德 张俊

张晓旭, 周爱国, 刘运德, 张俊. 鄂尔多斯盆地多级次地下水流系统中硝酸盐分布特征及其成因[J]. 地质科技通报, 2022, 41(1): 231-239. doi: 10.19509/j.cnki.dzkq.2022.0022
引用本文: 张晓旭, 周爱国, 刘运德, 张俊. 鄂尔多斯盆地多级次地下水流系统中硝酸盐分布特征及其成因[J]. 地质科技通报, 2022, 41(1): 231-239. doi: 10.19509/j.cnki.dzkq.2022.0022
Zhang Xiaoxu, Zhou Aiguo, Liu Yunde, Zhang Jun. Distribution characteristics and genesis of nitrate in nested groundwater flow system in northern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 231-239. doi: 10.19509/j.cnki.dzkq.2022.0022
Citation: Zhang Xiaoxu, Zhou Aiguo, Liu Yunde, Zhang Jun. Distribution characteristics and genesis of nitrate in nested groundwater flow system in northern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 231-239. doi: 10.19509/j.cnki.dzkq.2022.0022

鄂尔多斯盆地多级次地下水流系统中硝酸盐分布特征及其成因

doi: 10.19509/j.cnki.dzkq.2022.0022
基金项目: 

国家自然科学基金项目 41772263

中国地质调查局干旱-半干旱区地下水与生态重点实验室基金项目 KLGEAS201602

详细信息
    作者简介:

    张晓旭(1997-), 女, 现正攻读水文地质学专业硕士学位, 主要从事环境地球化学方面的研究工作。E-mail: zhangxiaoxu@cug.edu.cn

    通讯作者:

    刘运德(1984-), 男, 副教授, 博士生导师, 主要从事环境同位素与环境水文地质领域的教学与研究工作。E-mail: lydcn84@126.com

  • 中图分类号: P641;X141

Distribution characteristics and genesis of nitrate in nested groundwater flow system in northern Ordos Basin

  • 摘要: 水资源短缺的鄂尔多斯盆地内地下水遭受硝酸盐(NO3-)污染等问题日益突出,识别盆地不同地下水流系统的NO3-分布规律及其成因,对地下水资源的合理利用与保护具有重要意义。选取鄂尔多斯盆地北部湖泊集中区白垩系地下水系统为研究对象,基于水化学和聚类-主成分分析划分地下水流系统级次,在此基础上对比分析不同级次地下水流系统中NO3-分布特征,综合水化学和环境同位素分析识别多级次地下水流系统中NO3-来源及其潜在过程。研究表明:研究区ρ(NO3-)超出地下水质量标准(GB/T 14848-2017)Ⅲ类水标准的地下水样品集中在局部-中间地下水流系统,其超标率达到28%;区域地下水流系统中ρ(NO3-)均值约为1 mg/L。研究区不同级次地下水流系统中ρ(NO3-)分布特征主要与人类活动影响程度有关,而地下水蒸发富集和反硝化衰减作用对ρ(NO3-)的影响可以忽略。其中,局部-中间地下水流系统受到人类活动产生的污染影响显著,其NO3-污染主要来源于无机铵肥和粪便污水等;区域地下水流系统可能尚未受到人类活动污染,其NO3-来源于天然有机氮矿化。

     

  • 图 1  研究区区位图(a)(据文献[32]修改)、采样点空间分布图(b)和A-A′剖面地下水流系统示意图(c)(据文献[33]修改)

    Figure 1.  Location of the study area(a), spatial distribution of sampling sites(b) and the schematic diagram of groundwater flow system at section A-A′(c)

    图 2  聚类分析树状图(a)和主成分得分-载荷图(b)

    Figure 2.  Dendrogram of cluster analysis(a) and diagram of principal components scores-load (b)

    图 3  不同类别地下水样的氢氧同位素组成(δ2HH2Oδ18OH2O)关系图

    Figure 3.  Relationship between δ2HH2O and δ18OH2O in different clusters of groundwater samples

    图 4  不同类别地下水样的d值与ρ(NO3-)之间的关系

    Figure 4.  Relationship between deuterium-excess value and nitrate content in different clusters of groundwater samples

    图 5  不同类别地下水样的稳定氮同位素组成(δ15NNO3)与ln(NO3-N)之间的关系

    Figure 5.  Relationship between δ15NNO3 and nitrate content in different clusters of groundwater samples

    图 6  不同类别地下水样中NO3-δ18O和δ15N关系图(图中各潜在来源NO3-δ15N和δ18O值源于文献[5, 44, 47])

    Figure 6.  Relationship between δ18ONO3 and δ15NNO3 in different clusters of groundwater samples

    表  1  不同类别地下水样的水化学组成

    Table  1.   Hydrochemical components in different clusters of groundwater samples

    地下水样品 ρ(DO)/(mg·L-1) ρ(TDS)/(mg·L-1) ρ(NO3-)/(mg·L-1) δ15NNO3/‰ δ18ONO3/‰ δ18OH2O/‰ δ2HH2O/‰ 主要水化学类型
    C1 最小值~最大值 0.1~2.5 277.0~437.5 0.7~5.3 1.9~6.4 -2.0~11.6 -10.78~-9.10 -87.7~-75.0 HCO3-Na型和HCO3·SO4-Na型
    均值 1.5 349.7 1.2 3.6 2.6 -10.18 -83.5
    C2 最小值~最大值 8.0~10.6 366.4~681.3 64.8~191.8 -0.7~4.6 -2.8~4.1 -8.87~-7.58 -67.8~59.6 HCO3-Ca型和HCO3·NO3-Ca型
    均值 9.6 496.1 123.3 2.3 -0.4 -8.21 -63.7
    C3 最小值~最大值 1.6~9.6 201.8~409.0 0.8~97.8 2.3~6.9 -4.5~6.3 -11.44~-7.38 -88.1~58.9 HCO3-Ca型和HCO3-Na型
    均值 5.7 286.3 32.1 4.4 0.6 -9.06 -70.6
    下载: 导出CSV
  • [1] Chen Z X, Yu L, Liu W G, et al. Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system, China: Implication for nitrate sources and biogeochemical process[J]. Environmental Earth Sciences, 2014, 71(1): 217-223. doi: 10.1007/s12665-013-2425-9
    [2] 黄艳雯, 杜尧, 徐宇, 等. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报, 2020, 39(6): 165-174. doi: 10.19509/j.cnki.dzkq.2020.0618

    Huang Y W, Du Y, Xu Y, et al. Source and enrichment mechanism of ammonium in shallow confined aquifer in the west of Dongting Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 165-174(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0618
    [3] Ward M H, Jones R R, Brender J D, et al. Drinking water nitrate and human health: An updated review[J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1557. doi: 10.3390/ijerph15071557
    [4] 陈新明, 马腾, 蔡鹤生, 等. 地下水氮污染的区域性调控策略[J]. 地质科技情报, 2013, 32(6): 130-143, 149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm

    Chen X M, Ma T, Cai H S, et al. Regional control of groundwater nitrogen contamination[J]. Geological Science and Technology Information, 2013, 32(6): 130-143, 149(in Chinese with English Abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm
    [5] Nikolenko O, Jurado A, Borges A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review[J]. Science of the Total Environment, 2018, 621: 1415-1432. doi: 10.1016/j.scitotenv.2017.10.086
    [6] Xu S G, Kang P P, Sun Y. A Stable isotope approach and its application for identifying nitrate source and transformation process in water[J]. Environmental Science and Pollution Research, 2016, 23: 1133-1148. doi: 10.1007/s11356-015-5309-6
    [7] Kaushal S S, Groffman P M, Band L E, et al. Tracking nonpoint source nitrogen pollution in human-impacted watersheds[J]. Environmental Science and Technology, 2011, 45: 8225-8232. doi: 10.1021/es200779e
    [8] Zhang Y, Shi P, Li F, et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 2018, 208: 493-501. doi: 10.1016/j.chemosphere.2018.05.164
    [9] Yue F J, Li S L, Liu C Q, et al. Tracing nitrate sources with dual isotopes and long term monitoring of nitrogen species in the Yellow River, China[J]. Scientific Reports, 2017, 7: 8537. doi: 10.1038/s41598-017-08756-7
    [10] Li C, Li S L, Yue F J, et al. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model[J]. Science of the Total Environment, 2019, 646: 801-810. doi: 10.1016/j.scitotenv.2018.07.345
    [11] Taufiq A, Effendi A J, Iskandar I, et al. Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters[J]. Water Research, 2019, 148: 292-305. doi: 10.1016/j.watres.2018.10.049
    [12] Blarasin M, Cabrera A, Matiatos I, et al. Comparative evaluation of urban versus agricultural nitrate sources and sinks in an unconfined aquifer by isotopic and multivariate analyses[J]. Science of the Total Environment, 2020, 741: 140374. doi: 10.1016/j.scitotenv.2020.140374
    [13] Yi Q, Chen Q, Hu L, et al. Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks[J]. Environmental Science and Technology, 2017, 51(10): 5396-5403. doi: 10.1021/acs.est.6b06278
    [14] Minet E P, Goodhue R, Meier-Augenstein W, et al. Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs[J]. Water Research, 2017, 124: 85-96. doi: 10.1016/j.watres.2017.07.041
    [15] Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7: 1-14. doi: 10.1007/s100400050176
    [16] Villarreal P J, Ávila Olivera J A, Alcántara I I, et al. Nitrate as a parameter for differentiating groundwater flow systems in urban and agricultural areas: The case of Morelia-Capula area, Mexico[J]. Hydrogeology Journal, 2019, 27: 1767-1778. doi: 10.1007/s10040-019-01933-0
    [17] Tóth J. Gravitational systems of groundwater flow: Theory, evaluation, utilization[M]. Cambridge: Cambridge University Press, 2009.
    [18] 侯光才. 鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D]. 长春: 吉林大学, 2008.

    Hou G C. Groundwater system and water circulation pattern in Ordos Cretaceous groundwater Basin[D]. Changchun: Jilin University, 2008(in Chinese with English abstract).
    [19] Jiang X W, Wan L, Wang J Z, et al. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method[J]. Geophysical Research Letters, 2014, 41(8): 2812-2819. doi: 10.1002/2014GL059579
    [20] Jiang X W, Wan L, Wang X S, et al. A Multi-method study of regional groundwater circulation in the Ordos Plateau, NW China[J]. Hydrogeology Journal, 2018, 26: 1657-1668. doi: 10.1007/s10040-018-1731-4
    [21] Pan G F, Li X Q, Zhang J, et al. Groundwater-flow-system characterization with hydrogeochemistry: A case in the lakes discharge area of the Ordos Plateau, China[J]. Hydrogeology Journal, 2019, 27: 669-683. doi: 10.1007/s10040-018-1888-x
    [22] 王冬, 侯光才, 赵振宏. 鄂尔多斯盐海子地下水水流系统划分: 来自水化学方面的探讨[J]. 干旱区资源与环境, 2014, 28(12): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201412021.htm

    Wang D, Hou G C, Zhao Z H. Division of groundwater flow system of Yanhaizi in Ordos: From the aspect of hydrochemistry[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 122-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201412021.htm
    [23] Lyu M, Pang Z, Yin L, et al. The control of groundwater flow systems and geochemical processes on groundwater chemistry: A case study in Wushenzhao Basin, NW China[J]. Water, 2019, 11(4): 790. doi: 10.3390/w11040790
    [24] Lyu M, Pang Z, Huang T, et al. Hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin, Northwest China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320: 865-883. doi: 10.1007/s10967-019-06515-8
    [25] 张晶, 刘运德, 周爱国, 等. 硝酸盐污染地下水中溶解性有机质光谱特征及其指示意义: 以鄂尔多斯盆地北部湖泊集中区为例[J]. 地质科技情报, 2019, 38(4): 262-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904028.htm

    Zhang J, Liu Y D, Zhou A G, et al. Spectral characteristics of dissolved organic matter and their implications in groundwater contaminated by nitrate of lake concentration area in northern Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(4): 262-269(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904028.htm
    [26] Yang Q C, Wang L C, Ma H Y, et al. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China[J]. Environmental Pollution, 2016, 216: 340-349. doi: 10.1016/j.envpol.2016.05.076
    [27] 王冬. 鄂尔多斯白垩系盆地北部潜水硝酸盐污染成因分析及防治对策[J]. 地下水, 2006(4): 56-57, 107. doi: 10.3969/j.issn.1004-1184.2006.04.021

    Wang D. Analysis on formation causes of nitrate contamination of shallow groundwater and control countermeasures in northern part of cretaceous Ordos Basin[J]. Groundwater, 2006(4): 56-57, 107(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2006.04.021
    [28] Zhang Y, Liu Y, Zhou A, et al. Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods[J]. Water Research, 2021, 206: 117754. doi: 10.1016/j.watres.2021.117754
    [29] Yin L H, Hou G C, Dou Y, et al. Hydrogeochemical and isotopic study of groundwater in the Habor Lake Basin of the Ordos Plateau, NW China[J]. Environmental Earth Sciences, 2011, 64: 1575-1584. doi: 10.1007/s12665-009-0383-z
    [30] 马稚桐. 鄂尔多斯盆地风沙滩区土壤-地下水蒸发研究[D]. 西安: 长安大学, 2019.

    Ma Z T. Research on soil-groundwater evaporation in the wind-blown sand area of Ordos Basin[D]. Xi'an: Chang'an University, 2019(in Chinese with English abstract).
    [31] Chen J S, Liu X Y, Wang C Y, et al. Isotopic constraints on the origin of groundwater in the Ordos Basin of Northern China[J]. Environmental Earth Sciences, 2012, 66: 505-517. doi: 10.1007/s12665-011-1259-6
    [32] 曹阳. 鄂尔多斯白垩系盆地北部典型湖淖地区地下水循环模式研究[D]. 长春: 吉林大学, 2009.

    Cao Y. Groundwater circulation patterns of typical lake area in northern Ordos Cretaceous Basin[D]. Changchun: Jilin University, 2009(in Chinese with English abstract).
    [33] Zhang J, Wang X S, Yin L H, et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems[J]. Geophysical Research Letters, 2021, 48(16): 1-10.
    [34] Cloutier V, Lefebvre R, Therrien R, et al. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system[J]. Journal of Hydrology, 2008, 353(3/4): 294-313.
    [35] Castro R P, Ávila J P, Ye M, et al. Groundwater quality: Analysis of its temporal and spatial variability in a karst aquifer[J]. Groundwater, 2018, 56(1): 62-72. doi: 10.1111/gwat.12546
    [36] Güler C, Thyne G D, McCray J E, et al. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data[J]. Hydrogeology Journal, 2002, 10: 455-474. doi: 10.1007/s10040-002-0196-6
    [37] Woocay A, Walton J. Multivariate analyses of water chemistry: Surface and ground water interactions[J]. Groundwater, 2008, 46(3): 437-449. doi: 10.1111/j.1745-6584.2007.00404.x
    [38] Yin L, Hou G, Su X, et al. Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: Implications with respect to groundwater recharge and circulation[J]. Hydrogeology Journal, 2011, 19: 429-443. doi: 10.1007/s10040-010-0671-4
    [39] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Scienceand Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [40] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312

    Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312
    [41] Mariotti A, Germon J C, Hubert P, et al. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62: 413-430. doi: 10.1007/BF02374138
    [42] Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020
    [43] Xuan Y X, Tang C Y, Cao Y J. Mechanisms of nitrate accumulation in highly urbanized rivers: Evidence from multi-isotopes in the pearl River Delta, China[J]. Journal of Hydrology, 2020, 587: 124924. doi: 10.1016/j.jhydrol.2020.124924
    [44] Xue D M, Botte J, De Baets B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J]. Water Research, 2009, 43(5): 1159-1170. doi: 10.1016/j.watres.2008.12.048
    [45] Böttcher J, Strebel O, Voerkelius S, et al. Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3/4): 413-424.
    [46] Fukada T, Hiscock K M, Dennis P F, et al. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site[J]. Water Research, 2003, 37(13): 3070-3078. doi: 10.1016/S0043-1354(03)00176-3
    [47] Wang W, Song X, Ma Y. Identification of nitrate source using isotopic and geochemical data in the lower reaches of the Yellow River irrigation district(China)[J]. Environmental Earth Sciences, 2016, 75: 936. doi: 10.1007/s12665-016-5721-3
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  448
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回