Structure of karst groundwater system and its water exploration in Wumeng Mountain area
-
摘要: 为推动乌蒙山贫困缺水区生态环境建设、地下水资源合理利用,以昭通市作为重点调查区,基于地质调查、泉流量统计、水质检测,展开岩溶地下水富集规律及物探找水方法的研究。结果表明:①研究区岩溶地下水系统以条带岭谷型、埋藏型为主。条带岭谷型岩溶地下水系统以现代岩溶为主,目标含水层多、发育深度有限、岩溶发育及富水程度差异大,富水块段为背斜核部及两翼、向斜核部、断层影响带;埋藏型岩溶地下水系统以古岩溶为主,目标含水层单一、发育深度较深且极不均匀,富水块段为断陷谷盆埋藏的古岩溶。②地下水化学类型以HCO3型、HCO3·SO4型为主,条带岭谷型、埋藏型岩溶水分别占96.73%,92.93%,水质总体较好,综合水质评价Ⅰ~Ⅲ类水占比分别为80.84%,64.41%。③建议对>50 L/s大泉进行提引、丰储冬用,对富水块段进行综合物探探测和钻探验证的方法找水。④综合物探找水方法:先通过高密度电法、联合剖面法查明岩溶破碎带及断层,再激电测深确定极化率高的含水层,最后综合测井和钻孔揭露确定具体出水段及涌水量,找水成功率为86.67%,适用于条带岭谷型及浅埋岩溶地下水。Abstract: The Wumeng Mountain Contiguous Zone in China always suffers from deficiency of groundwater resources.The Zhaotong area of Yunnan Provience belongs to the Wumeng Mountain area, which was the key area.We carried out geological survey, spring flow statistics and water quality evaluation in karst stratum.The strip karst area, which always located in ridge-valley area, with many target aquifers, karst shallow.Groundwater was concentrated in the core of anticlinoria and both wings, the core of syncline and fault zone.The buried karst water mainly concentrated in the paleo-karst stratum in Zhaolu fault basin, and covered below Tertiary system.Most chemical type of groundwater was determined as HCO3 and HCO3·SO4 type.The strip and buried karst water account for 96.73% and 92.93% respectively.The comprehensive water quality evaluation results of 80.84% simple analysis and 64.41% total analysis were classified as Ⅰ-Ⅲ.We suggest that large flow springs more than 50 L/s should be extracted, diverted and stored for winter use.Combined with geophysical exploration and drilling verification, the target aquifer was more successfully found in water-rich section of strip and shallow buried karst areas.Firstly, the high-density electrical method and combined profile method were conducted to find out the karst fracture zone and fault.Then, the IP sounding was set to explore the depth of the aquifer with high polarizability.Finally, the water supply segment and water inflow were determined by comprehensive logging and drilling.The rate of successfully extracting water was 86.67%.Then, we could recommend the well location.
-
表 1 条带岭谷型岩溶地下水系统泉点流量特征
Table 1. Characteristics of spring water flow in the strip ridge-valley karst area
泉点类型 地层 个数 最小值 最大值 总和 平均值 标准偏差 变异系数 流量Q/(L·s-1) 暗河、岩溶大泉、裂隙-岩溶泉 P1q+m 184 0.010 390.00 1 738.96 9.45 43.28 1 872.94 T1-2 64 0.004 116.50 489.08 7.64 18.36 337.07 C 95 0.010 500.00 628.47 6.62 51.40 2 642.08 裂隙-岩溶泉 ∈2-3 16 0.100 18.00 33.81 2.11 4.31 18.56 O 36 0.004 17.00 71.60 1.99 3.56 12.71 裂隙-岩溶泉、裂隙泉 D 164 0.010 45.94 266.71 1.63 5.54 30.70 S 121 0.010 18.50 143.67 1.19 2.40 5.77 ∈1 13 0.100 1.80 7.45 0.57 0.48 0.23 表 2 条带岭谷型岩溶地下水系统水化学类型数量统计
Table 2. Statistics of chemical types of groundwater in the strip ridge-valley karst area
水化学类型 Ca2+ Ca2+· Mg2+ Na+·Ca2+ Na+ 合计 洒渔河地下水系统 HCO3- 6 22 / / 28 HCO3-·SO42- 1 3 / / 4 SO42- / 3 / / 3 洛泽河地下水系统 HCO3- 45 47 / / 92 HCO3-·SO42- 24 29 16 / 69 SO42- / 10 / / 10 白水江地下水系统 HCO3- 42 18 / / 60 HCO3-·SO42- 19 19 42 23 103 SO42- 6 2 1 29 38 表 3 条带岭谷型岩溶地下水质量分级统计
Table 3. Statistics of groundwater quality classification in the strip ridge-valley karst area
水质分析类型 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 简分析/组 37 110 71 24 30 占比/% 13.6 40.44 26.10 8.82 11.03 全分析/组 / 51 65 31 32 占比/% / 28.49 36.31 17.32 17.88 表 4 埋藏型岩溶地下水系统钻井统计
Table 4. Statistics of drilling of groundwater system in the buried karst area
地下水系统 钻井编号 深度/ m 涌水量/ (m3·d-1) 自流量/ (L·s-1) 温度/ ℃ 洒渔河(干流) 地下水系统(①1) J1 182 630 / / J2 / / 10 / 昭鲁大河地下水系统(①3) J3 131 / 1.7 28.00 J4 300 812 / 34.00 J5 187 2 074 / 38.20 J6 89 1 144 / 33.00 J7 150 450 / 12.8 J8 325 / / / 表 5 不同岩溶地下水流系统富水特征及利用方式建议
Table 5. Characteristics of different karst groundwater flow systems and suggested utilization patterns
地下水系统类型 富水结构 富水性 富水块段 利用方式 富水块段 条带岭谷型 单斜横向谷 河谷排泄型 水量丰富,泉流量大 河谷区 提引、丰储冬用 Ⅰ4、Ⅰ7、Ⅰ9 洼地潜埋型 水量丰富 地势低洼处 探采结合 Ⅰ5、Ⅰ8 断层阻水型 水量丰富 地下水上游侧 Ⅰ1-2 单斜纵向谷 倾向运移型 水量较小 地势低洼处 探采结合 Ⅰ3 断层阻水型 水量随地势降低而增大 断层带 Ⅰ6 背斜型 背斜山地型 动态变化较大 背斜两翼 探采结合 Ⅱ1-3 倾伏背斜型 动态变化较大 地势低的一翼 Ⅱ6 背斜谷地型 水量大且动态稳定 核部峡谷区 提引、丰储冬用 Ⅱ4、Ⅱ5、Ⅱ7-9、Ⅱ11-12、Ⅰ14 引提为主、探采结合 Ⅱ10、Ⅱ13 向斜型 向斜山地型 动态变化较大 向斜核部、两翼 探采结合 Ⅲ1 谷地承压型 水量丰富,泉流量大 向斜核部 提引、丰储冬用 Ⅲ5 引提为主、探采结合 Ⅲ2-4 埋藏型 / / 水量丰富 昭鲁盆地区 钻井开采 Ⅳ1-3 表 6 研究区岩溶山区各地层视电阻率和极化率统计
Table 6. Statistics of resistivity and polarizability of every stratum in karst area
岩土名称 视电阻率 极化率 变化范围ρ/(Ω·m) 常见值ρ/ (100Ω·m) 变化范围η/% 常见值η/% 黏土 30~60 0.45 0.2~0.4 0.3 粉砂层 10~20 0.15 1.0~13.0 7.0 卵砾石层 50~150 1.00 0.6~1.0 0.8 钙质粉砂岩 200~600 3.50 0.6~1.0 0.8 T1y、P1m灰岩(完整) 300~1 000 15.00 0.5~1.1 0.8 P1q灰岩(完整) 600~4 000 溶蚀破碎带 60~600 2.00 1.2~4.2 2.2 白云岩 300~1 000 6.00 0.4~1.2 0.8 页岩 20~400 2.00 0.3~0.7 0.4 泥灰岩 30~150 0.90 0.5~0.8 0.7 表 7 研究区钻孔涌水量、水质及综合测井试验结果
Table 7. Water inflow, water quality and comprehensive logging test results in the study area
钻孔编号 含水层 进尺深度/m 静水位埋深/m 碳酸盐岩段/m 综合测井推测出水段/m 单井涌水量/ (m3·d-1) 水质综合评价分类 超标因子 ZK01 P1q+m 150.10 107.8 12.8~150.1 15~20 50.6 4 亚硝酸盐 ZK03 P1q+m 150.10 24.8 0.3~82.3 91.4~134.65 388.9 4 浑浊度 ZK04 P1q+m 198.20 干孔 27.0~198.2 / / / / ZK07 P1q+m 150.31 12.4 9.0~150.31 14.1~29.6 96.1~106.1 720 1 / ZK08 T1y 150.2 75.1 27.18~150.2 27.8~50.0 124.2 1 ZK09 P1q+m 150.57 99.85 22.7~150.57 100~130 51.4 2 / ZK10 C 70.40 44.5 14.1~70.4 56.3~69.3 131.2 4 氨氮超标 ZK11 P1q+m 150.00 47.4 1.1~118.76 49.97~52.67 62.21~65.62 74.33~76.77 40 4 大肠杆菌、菌落总数、高锰酸盐 ZK12 T1y 150.00 56.1 3.0~150.0 107.30~127.30 4.32 5 硝酸盐、硫酸盐 ZK13 P1q+m 150.00 67.45 15.5~150.0 64.0~79.4 58.8 4 硫酸盐超标 ZK15 C 102.42 0 5.02~102.4 5.02~55.16 78.12~102.4 82.512 4 pH、铁、铅 ZK17 S 160.40 18.8 15.8~160.4 36.32~160.4 102.99 4 铬、铅、铁、锌 ZK18 D 192.50 干孔 65.28~192.5 / / / / ZK19 P1q+m 168.80 111.2 28.5~168.8 140.0~152.0 20.8 2 / ZK20 P1q+m 133.70 95.73 35.2~133.7 106.70~120.30 131.23 2 / 注:水质评价结果依据《地下水质量标准》(GB/T 14848-2017)从劣不从优原则评价 -
[1] 袁道先. 我国西南岩溶石山的环境地质问题[J]. 世界科技研究与发展, 1997, 19: 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF199705009.htmYuan D X. On the environmental and geologic problems of karst mountains and rocks in the Southwest China[J]. World SCI-Tech R & D, 1997, 19: 41-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF199705009.htm [2] Sun W J, Song J X, Yang W K, et al. Distribution of carbonate rocks and variation analysis of karst water resources in China[J]. Carbonates and Evaporites, 2020, 35(121): 2-9. [3] 张俊锋, 李强, 史永跃, 等. 西南某隧道岩溶水发育规律及涌水量预测[J]. 现代隧道技术, 2021, 58(2): 14-21, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202102004.htmZhang J F, Li Q, Shi Y Y, et al. On development law of karst water and prediction of water inflow in a tunnel in Southwest China[J]. Modern Tunneling Technology, 2021, 58(2): 14-21, 50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202102004.htm [4] 袁道先. 对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J]. 中国岩溶, 2000, 19(2): 103-108. doi: 10.3969/j.issn.1001-4810.2000.02.001Yuan D X. Aspects on the new round land and resources survey in kast rock desertification areas of South China[J]. Carsologica Sinica, 2000, 19(2): 103-108(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2000.02.001 [5] 靖娟利, 陈植华, 胡成, 等. 中国西南部岩溶山区生态环境脆弱性评价[J]. 地质科技情报, 2003, 23(3): 95-99, 108. doi: 10.3969/j.issn.1000-7849.2003.03.019Jing J L, Cheng Z H, Hu C, et al. Study on eco-environment fragile evaluation of karst mountains in Southwest China[J]. Geological Science and Technology Information, 2003, 23(3): 95-99, 108(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2003.03.019 [6] 张彦林, 李生永, 付东林, 等. 陇东盆地西部岩溶地下水形成机制研究[J]. 中国地质, 2006, 33(6): 1393-1399. doi: 10.3969/j.issn.1000-3657.2006.06.024Zhang Y L, Li S Y, Fu D L, et al. Formation mechanism of karst groundwater in the western Longdong Basin[J]. Geology in China, 2006, 33(6): 1393-1399(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.06.024 [7] 洪涛, 谢运球, 喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016, 44(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201601002.htmHong T, Xie Y Q, Yu Q W, et al. Hydrochemical characteristics study and genetic analysis of groundwater in a key region of the Wumeng Mountain, southwestern China[J]. Earth and Environment, 2016, 44(1): 11-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201601002.htm [8] 钟金先, 李成, 刘兆鑫, 等. 基岩裂隙水水化学特征的聚类分析: 以乌蒙山重点地区为例[J]. 四川环境, 2017, 36(5): 53-58. doi: 10.3969/j.issn.1001-3644.2017.05.010Zhong J X, Li C, Liu Z X, et al. Cluster analysis of chemical characteristics of bedrock fissure water: Taking the Wumeng Shan key areas for example[J]. Sichuan Environment, 2017, 36(5): 53-58(in Chinese with English abstract). doi: 10.3969/j.issn.1001-3644.2017.05.010 [9] 魏良帅, 黄安邦, 罗雲丰, 等. 乌蒙山昭通地区玄武岩地下水赋存规律及开发利用[J]. 地质通报, 2020, 39(12): 1891-1898. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012004.htmWei L S, Huang A B, Luo Y F, et al. Occurrence regularity and exploration and utilization of groundwater in Zhaotong area of Wumeng Mountain[J]. Geological Bulletin of China, 2020, 39(12): 1891-1898(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012004.htm [10] Susilo H, Purwantoro D, Rahadiansyah S. Model performance index of groundwater irrigation systems in the karst mountain region: Case study in Gunung Kidul Regency, Yogyakarta[J]. IOP Conference Series: Earth and Environmental Science, 2021, 641: 012014. doi: 10.1088/1755-1315/641/1/012014 [11] Ana I M, José F M R, Juan A B, et al. Groundwater vulnerability to pollution in karst aquifers, considering key challenges and considerations: Application to the Ubrique springs in southern Spain[J]. Hydrogeology Journal, 2021, 29: 379-396. doi: 10.1007/s10040-020-02279-8 [12] Hao Z, Gao Y, Green M S, et al. Chemicalcharacteristics of flow driven by rainfall and associated impacts on shallow groundwater quality in a karst watershed, Southwest China[J]. Environmental Processes, 2021(8): 615-636. [13] Stevanović Z, Stevanović A M. Monitoring as the key factor for sustainable use and protection of groundwater in karst environments: An overview[J]. Sustainability, 2021, 13: 5468. doi: 10.3390/su13105468 [14] 张亮. 毛坪铅锌矿岩溶地下水系统及结构辨识研究[D]. 武汉: 中国地质大学(武汉), 2021.Zhang L. Study on karst groundwater systems and structure identification in Maoping lead-zinc mine, Southwest China[D]. Wuhan: China University of Geosciences(Wuhan), 2021(in Chinese with English abstract). [15] 刘伟江, 袁祥美, 张雅, 等. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报, 2018, 37(6): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htmLiu W J, Yuan X M, Zhang Y, et al. Hydrochemical characteristics and evolution of karst groundwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6): 245-251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm [16] 赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htmZhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotopic characteristics and influencing factors of karst water in the Niangziguan spring area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm [17] Temovski M, Túri M, Futó I, et al. Multi-method geochemical characterization of groundwater from a hypogene karst system[J]. Hydrogeology Journal, 2021, 29: 1129-1152. doi: 10.1007/s10040-020-02293-w [18] René V H, Oscar G M, Glenda R L, et al. Hydrochemistry, δD and δ18O to explain the distribution of water quality in a karst setting in the semi-arid region of Northeast Mexico[J]. Environmental Earth Sciences, 2021, 80(6): 3-12. [19] Palcsu L, Gessert A, Túri M, et al. Long-term time series of environmental tracers reveal recharge and discharge conditions in shallow karst aquifers in Hungary and Slovakia[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100858. doi: 10.1016/j.ejrh.2021.100858 [20] Li C C, Gao X B, Wang W Z, et al. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China[J]. Journal of Hydrology, 2020, 596: 125691. [21] 黄奇波, 康志强, 覃小群, 等. 习水县岩溶水系统ρ(Sr2+)、ρ(Sr)/ρ(Ca)、ρ(Sr)/ρ(Mg)分布特征及其应用[J]. 地质科技情报, 2011, 30(4): 98-103. doi: 10.3969/j.issn.1000-7849.2011.04.015Hung Q B, Kang Z Q, Qin X Q, et al. Distribution characteristics of Sr2+, Sr/Ca, Sr/Mg and its applications in karst water system of Xishui County[J]. Geological Science and Technology Information, 2011, 30(4): 98-103(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.04.015 [22] 郭清海, 王焰新. 水文地球化学信息对岩溶地下水流动系统特征的指示意义: 以山西神头泉域为例[J]. 地质科技情报, 2006, 25(3): 85-88. doi: 10.3969/j.issn.1000-7849.2006.03.015Guo Q H, Wang Y X. Hydrogeochemistry as an indicator for karst groundwater flow: A case study in the Shentou karst water system, Shanxi, China[J]. Geological Science and Technology Information, 2006, 25(3): 85-88(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2006.03.015 [23] 李义连, 王焰新, 周来茹, 等. 地下水矿物饱和度的水文地球化学模拟分析: 以娘子关泉域岩溶水为例[J]. 地质科技情报, 2002, 21(1): 32-36. doi: 10.3969/j.issn.1000-7849.2002.01.008Li Y L, Wang Y X, Zhou L R, et al. Hydrogeochemical modeling in saturation of minerals in groundwater: A case study at Niangziguan, northern China[J]. Geological Science and Technology Information, 2002, 21(1): 32-36(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2002.01.008 [24] Chen S, Peng H Y, Yang C, et al. Investigation of the impacts of tunnel excavation on karst groundwater and dependent geo-environment using hydrological observation and numerical simulation: A case from karst anticline mountains of southeastern Sichuan Basin, China[J]. Environmental Science and Pollution Research International, 2021, 28(30): 40203-40216. doi: 10.1007/s11356-021-13919-1 [25] 郭绪磊, 朱静静, 陈乾龙, 等. 新型地下水流速流向测量技术及其在岩溶区调查中的应用[J]. 地质科技情报, 2019, 38(1): 243-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901027.htmGuo X L, Zhu J J, Chen Q L, et al. Flow direction and its application in the investigation of karst area[J]. Geological Science and Technology Information, 2019, 38(1): 243-249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901027.htm [26] Pisani L, Antonellini M, D'Angeli I M, et al. Structurally controlled development of a sulfuric hypogene karst system in a fold-and-thrust belt(Majella Massif, Italy)[J]. Journal of Structural Geology, 2021, 145: 104305. doi: 10.1016/j.jsg.2021.104305 [27] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水文地球化学特征[J]. 水文地质工程地质, 2016, 43(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601004.htmYuan J F, Deng G S, Xu F, et al. Hydrogeochemical characteristics of karst groundwater in the northern part of the city of Bijie[J]. Hydrogeology & Environment Geology, 2016, 43(1): 12-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601004.htm [28] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析[J]. 中国地质, 2016, 43(4): 1446-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604029.htmYuan J F, Deng G S, Xu F, et al. The multivariate statistical analysis of chemical characteristics and influencing factors of karst groundwater in the northern part of Bijie City, Guizhou Province[J]. Geology in China, 2016, 43(4): 1446(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604029.htm [29] 郑明英, 王明章. 深切河谷区开放型岩溶地下水系统特征研究[J]. 贵州地质, 2011, 28(1): 65-69. doi: 10.3969/j.issn.1000-5943.2011.01.012Zheng M Y, Wang M Z. Characters of open karst groundwater system in the deep-incised valley[J]. Guizhou Geology, 2011, 28(1): 65-69(in Chinese with English abstract). doi: 10.3969/j.issn.1000-5943.2011.01.012 [30] 曹锐, 冉瑜, 吕玉香, 等. 物探与水文地质分析结合在岩溶地区找水定井中的应用: 以黔江区罗家坝ZK3井为例[J]. 中国岩溶, 2018, 37(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802015.htmCao R, Ran Y, Lv Y X, et al. Application of geophysical prospecting and hydrogeological analysis in borehole siting in the karst area: A case study of ZK3 well in Luojiaba, Qianjiang district[J]. Carsologica Sinica, 2018, 37(2): 280-285(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802015.htm [31] 任蕊, 杨成程, 匡野. 乌蒙山岩溶缺水地区表层岩溶泉有效开发模式研究[J]. 地下水, 2018, 40(2): 24-26. doi: 10.3969/j.issn.1004-1184.2018.02.008Ren R, Yang C C, Kuang Y. Study on the exploitation model of epikarst spring karst water Wumengshan area[J]. Groundwater, 2018, 40(2): 24-26(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2018.02.008 [32] 钟金先, 崔英山, 毛郁, 等. 乌蒙山重点地区水文地质特征分析[J]. 地下水, 2016, 38(5): 179-182. doi: 10.3969/j.issn.1004-1184.2016.05.070Zhong J X, Cui Y S, Mao Y, et al. Analysis on hydrogeology characteristics in Wumengshan key areas[J]. Groundwater, 2016, 38(5): 179-182(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2016.05.070 [33] 李华, 焦彦杰, 吴文贤, 等. 西南岩溶地区找水的地球物理方法探讨[J]. 水文地质工程地质, 2011, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105003.htmLi H, Jiao Y J, Wu W X, et al. A tentative analysis on the geophysical technique which is compatible for groundwater exploration at karst area in Southwest of China[J]. Hydrogeology & Environment Geology, 2011, 38(5): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105003.htm [34] 程正璞, 田蒲源, 吕勇, 等. 综合地球物理方法在乌蒙山岩溶区地质填图中的应用[J]. 工程地球物理学报, 2019, 16(6): 829-836. doi: 10.3969/j.issn.1672-7940.2019.06.008Cheng Z P, Tian P Y, Lv Yong, et al. Application of integrated geophysical method geological mapping of Wumengshan karst area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(6): 829-836(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2019.06.008 [35] 席义明, 杨涛毅. 贵州岩溶石山区物探找水方法综合集成趋势分析[J]. 贵州地质, 2012, 29(2): 108-111. doi: 10.3969/j.issn.1000-5943.2012.02.009Xi M Y, Yang T Y. Analyses on development direction of comprehensible geophysical groundwater exploration technology in karst mountain area of Guizhou[J]. Guizhou Geology, 2012, 29(2): 108-111. doi: 10.3969/j.issn.1000-5943.2012.02.009 [36] 裴建国, 梁茂珍, 陈阵. 西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J]. 中国岩溶, 2008, 27(1): 6-10. doi: 10.3969/j.issn.1001-4810.2008.01.002Pei J G, Liang M Z, Chen Z. Classification of karst groundwater system and statistics of the main characteristic values in Southwest China karst mountain[J]. Carsologica Sinica, 2008, 27(1): 6-10(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2008.01.002 [37] 贾晓青, 刘建, 罗明明, 等. 基于改进的DRASTIC模型对香溪河典型岩溶流域地下水脆弱性评价[J]. 地质科技情报, 2019, 38(4): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904027.htmJia X Q, Liu J, Luo M M, et al. Groundwater vulnerability assessment of Xiangxi River karst basin based on modified DRASTIC model[J]. Geological Science and Technology Information, 2019, 38(4): 255-261(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904027.htm [38] 李凤哲, 朱庆俊, 孙银行. 西南岩溶山区物探找水效果[J]. 物探与化探, 2013, 37(4): 591-595. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201304006.htmLi F Z, Zhu Q J, Sun Y X. The effects of geophysical water exploration in karst mountain Southwest China[J]. Geophysical & Geochemical Exploration, 2013, 37(4): 591-595(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201304006.htm [39] 焦彦杰, 吴文贤, 杨剑, 等. 云南岩溶石山区物探找水方法与实例分析[J]. 中国地质, 2011, 38(3): 770-778. doi: 10.3969/j.issn.1000-3657.2011.03.025Jiao Y J, Wu W X, Yang J, et al. Geophysical water exploration methods in stone mountain karst areas and case analysis[J]. Geology in China, 2011, 38(3): 770-778(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.03.025 [40] 曹崇本, 周世恩. 岩溶蓄水构造电阻率模型建立及其在物探找水中的应用[J]. 贵州地质, 2014, 31(3): 223-228. doi: 10.3969/j.issn.1000-5943.2014.03.012Cao C B, Zhou S E. Building and significance of karst reservoir structure resistivity model in geophysical water exploration[J]. Geology in China, 2014, 31(3): 223-228(in Chinese with English abstract). doi: 10.3969/j.issn.1000-5943.2014.03.012