留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青海天峻新关角隧道涌排水水源识别与量化分析

彭红明 袁有靖 李铜邦 董高峰 刘毅 巴瑞寿

彭红明, 袁有靖, 李铜邦, 董高峰, 刘毅, 巴瑞寿. 青海天峻新关角隧道涌排水水源识别与量化分析[J]. 地质科技通报, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026
引用本文: 彭红明, 袁有靖, 李铜邦, 董高峰, 刘毅, 巴瑞寿. 青海天峻新关角隧道涌排水水源识别与量化分析[J]. 地质科技通报, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026
Peng Hongming, Yuan Youjin, Li Tongbang, Dong Gaofeng, Liu Yi, Ba Ruishou. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026
Citation: Peng Hongming, Yuan Youjin, Li Tongbang, Dong Gaofeng, Liu Yi, Ba Ruishou. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026

青海天峻新关角隧道涌排水水源识别与量化分析

doi: 10.19509/j.cnki.dzkq.2022.0026
基金项目: 

青海省地质勘查基金项目 青国土资矿[2014]26

青海省环境地质重点实验室科技项目 2021-KJ-005

详细信息
    作者简介:

    彭红明(1985-), 男, 正高级工程师, 主要从事水文地质工程地质环境地质调查研究相关工作。E-mail: hmpeng1985@163.com

  • 中图分类号: P641

Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai

  • 摘要: 涌排水严重影响隧道施工与运行安全,查明隧道涌排水的来源,是隧道防水止水重要科学依据。青海天峻新关角隧道南北洞口处的地下水排水量分别为10 021,60 877 m3/d,两者存在近50 000 m3/d的差异,涌排水量大,且来源不明。基于水文地质条件分析,分别采集了新关角隧道隧址区内大气降水、不同类型地下水和隧道出口涌排水水化学和氢氧稳定同位素样品。样品测试结果显示:新关角隧道北出口涌排水ρ(TDS)为0.44 g/L,2H和18O均值为-52.7‰,-8.3‰;南出口涌排水ρ(TDS)为0.85 g/L,2H和18O均值为-54.8‰,-8.5‰,隧址区基岩裂隙水ρ(TDS)为0.32~1.22 g/L,2H和18O均值为-55.77‰,-8.61‰;岩溶水ρ(TDS)为0.28~0.43 g/L,2H和18O均值为-50.92‰,-8.13‰,冻结层上水ρ(TDS)为0.26~0.48 g/L,2H和18O均值为-45.5‰,-7.6‰。对比分析认为:新关角隧道北出口涌排水主要来源于岩溶水,岩溶水占比为63%~80%,基岩裂隙水占20%~37%;新关角隧道南出口涌排水主要源于基岩裂隙水,基岩裂隙水占72%~88%,岩溶水占比12%~28%。涌水来源识别与水量,可为后期监测站点优化设置及隧道运行期止水工程实施提供科学依据。

     

  • 图 1  研究区影像图

    Figure 1.  Image map of the study area

    图 2  研究区地质构造图

    Figure 2.  Geological structure map of the study area

    图 3  研究区水文地质图及采样点分布图

    Figure 3.  Hydrogeological map and sampling point distribution map of the study area

    图 4  研究区水化学分区图

    Figure 4.  Hydrochemical zoning map of the study area

    图 5  研究区不同水体Piper三线图

    Figure 5.  Piper diagram of different water bodies in the study area

    图 6  研究区不同水体Gibbs图

    Figure 6.  Gibbs diagram of different water bodies in the study area

    图 7  研究区δD-δ18O线性关系拟合图

    Figure 7.  δD-δ18O linear relationship fitting diagram of the study area

    图 8  研究区不同类型水体δD-δ18O关系图

    Figure 8.  δD-δ18O relationship diagram of different types of water bodies in the study area

    图 9  新隧道地下水排泄示意图

    Figure 9.  Diagram of groundwater discharge of new tunnel

    图 10  老隧道地下水排泄示意图

    Figure 10.  Diagram of groundwater discharge of old tunnel

    图 11  隧址区北部地下水及隧道排水主要离子特征

    Figure 11.  Main ion characteristics of groundwater and tunnel drainage in the north

    图 12  隧址区南部地下水及隧道排水主要离子特征

    Figure 12.  Main ion characteristics of groundwater and tunnel drainage in the south

    表  1  研究区部分采样点水化学特征

    Table  1.   Hydrochemical characteristics of main sampling points in the study area

    点号 Ca2+ Mg2+ Na+ HCO3- SO42- Cl- ρ(TDS)/(g·L-1) 水化学类型 含水层岩性与地下水类型
    ρB/(mg·L-1)
    TJ142 分水岭北 116.2 63.2 86 402.7 228.1 134.7 0.83 HCO3·SO4-Ca·Mg·Na T1-2xh粉砂质板岩 基岩裂隙水
    ZK1 80.2 35.2 44.5 355.6 110.5 46.1 0.49 HCO3·SO4-Ca·Mg
    TJ62 74.15 12.15 42.33 268.5 28.82 35.45 0.32 HCO3-Ca Sb2变质粉砂岩
    TJ121 102.2 40.1 54.8 311.2 175.3 70.9 0.6 HCO3·SO4-Ca·Mg T1-2xh粉砂质板岩
    TJ134 152.3 66.8 65.9 463.8 232.9 124.1 0.87 HCO3·SO4-Ca·Mg
    TJ171 86.2 37.7 123.2 445.4 91.3 124.1 0.69 HCO3·Cl-Na·Ca N2a砾岩 孔隙裂隙水
    TJ23 68.1 3.6 18 158.7 67.2 21.3 0.26 HCO3·SO4-Ca T1-2j1结晶灰岩 冻结层上水
    TJ34 58.1 3.6 35 158.7 81.7 21.3 0.28 HCO3·SO4-Ca·Na
    TJ85 92.2 4.9 23 207.5 91.3 24.8 0.34 HCO3·SO4-Ca
    TJ149 88.2 9.7 14 164.8 117.7 21.3 0.34 HCO3·SO4-Ca
    TJ5 分水岭北 76.2 10.9 10.3 201.4 57.6 21.3 0.28 HCO3-Ca T1-2j1结晶灰岩 碳酸盐裂隙岩溶水
    TJ49 108.2 6.1 11.5 292.9 43.2 24.8 0.34 HCO3-Ca
    ZK2 90.18 30.38 17.5 268.5 60.04 63.81 0.4 HCO3-Ca·Mg
    ZK3 62.12 14.58 72 219.7 129.7 35.45 0.43 HCO3·SO4-Ca·Na
    TJ242 分水岭南 100.1 42.1 60 320.1 172.5 68.5 0.6 HCO3·SO4-Ca·Mg Cgc石英砂岩 基岩裂隙水
    二郎洞 188.6 102.5 61.5 395.4 551.4 99.6 1.22 SO4·HCO3-Ca·Mg Cpt变质岩
    TJ201 82.16 23.09 21.67 207.5 132.1 24.82 0.39 HCO3-Ca P1b结晶灰岩 裂隙岩溶水
    TJ217 108.2 18.2 24 183.1 187.3 31.9 0.47 SO4·HCO3-Ca
    TJ246 92.2 9.7 52.8 128.1 235.3 21.3 0.48 SO4·HCO3-Ca·Na Cpt变砂岩 冻结层上水
    TJ271 72.1 6.1 67 97.6 254.6 14.2 0.47 SO4-Ca·Na
    老隧道北 98.0 25.1 19 295.1 48 53.2 0.39 HCO3-Ca·Mg 隧道排水
    新隧道北 80.6 20.5 40 210.5 151 38.5 0.44 HCO3·SO4-Ca
    老隧道南口 84.5 27.5 40 287.6 120.1 40.8 0.46 HCO3·SO4-Ca·Mg
    新隧道南口 131.5 57.7 75.95 335 350 70 0.85 SO4·HCO3-Ca·Mg
    下载: 导出CSV

    表  2  研究区同位素组成特征

    Table  2.   Isotopic composition of the study area

    取样位置或样品编号 分析项目 备注 取样位置或样品编号 分析项目 备注
    δD/‰ δ18O/‰ 3H/TU(ΔTU) δD/‰ δ18O/‰ 3H/TU(ΔTU)
    关角绞合木 -13 -3.9 雨水 TJ142 -54.5 -8.2 9.6(1.0) 基岩裂隙水
    新隧道北口 -52.7 -8.3 11.3(3.5) 隧道排水 ZK1 -55.6 -8.74 8.4(0.3)
    新隧道南口 -54.8 -8.5 10(1.1) TJ260 -57.2 -8.9 9.2(1.0)
    老隧道北口 -52.4 -8.3 11.6(1.2) TJ5 -47.4 -7.7 14.1(1.2) 裂隙岩溶水
    老隧道南口 -52.1 -8.2 12(0.8) TJ143 -51.6 -7.9 14.9(1.5)
    TJ34 -43.1 -7.4 17.1(1.3) 冻结层上水 TJ79 -51.2 -8.2 11.6(1.2)
    TJ64 -38.6 -6.5 16.9(1.0) ZK2 -52.6 -8.43 9.5(1.0)
    TJ217 -53.7 -8.4 12.7(0.8) ZK3-1 -51.42 -8.25 11.5(1.1)
    TJ271 -46.6 -8.1 11(0.8) ZK3-2 -51.27 -8.31 12.6(1.3)
    下载: 导出CSV

    表  3  隧址区地下水及隧道排水主要离子及元素测试结果

    Table  3.   Average content of main ions and elements in groundwater and tunnel drainage

    地貌单元 地下水类型或位置 ρ(TDS)/(g·L-1) γCl-/γHCO3- γMg2+/γCa2+ δD/‰ δ18O/‰ 3H/Tu
    分水岭北 岩溶水 0.370 0.287 0.361 -50.92 -8.13 12.37
    基岩裂隙水 0.637 0.421 0.664 -55.77 -8.61 9.07
    老隧道北口 0.390 0.310 0.425 -52.4 -8.3 11.6
    新隧道北口 0.440 0.314 0.424 -52.7 -8.3 11.3
    分水岭南 岩溶水 0.390 0.206 0.468 -50.92 -8.13 12.37
    基岩裂隙水 0.910 0.404 0.835 -55.77 -8.61 9.07
    老隧道南口 0.460 0.244 0.542 -52.1 -8.2 12
    新隧道南口 0.850 0.359 0.731 -54.8 -8.5 10
    下载: 导出CSV

    表  4  不同指标计算出的隧道涌排水中岩溶水占比

    Table  4.   Proportion calculated by various indicators of karst water content in tunnel inflow

    ρ(TDS) γCl-/γHCO3- γMg2+/γCa2+ δD δ18O 3H
    占比/%
    老隧道北口 93 83 79 69 65 77
    新隧道北口 74 80 79 63 65 68
    老隧道南口 87 81 80 76 86 89
    新隧道南口 12 23 28 20 24 28
    下载: 导出CSV
  • [1] 杨艳娜. 西南山区岩溶隧道涌突水灾害危险性评价系统研究[D]. 成都: 成都理工大学, 2009.

    Yang Y N. Resarch of karst tunnel water bursting hazard risk assessment system in the southwest mountainous area[D]. Chengdu: Chengdu University of Technology, 2009(in Chinese with English abstract).
    [2] 金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 北京: 中国地质科学院, 2007.

    Chen J F. Regularity of karst development along the Yichang-Wanzhou railway and its influence on tunnel construction[D]. Beijing: Chinese Academy of Geological Sciences, 2007(in Chinese with English abstract).
    [3] Lan X D, Zhang X, Yin Z C, et al. Mitigation of karst tunnel water inrush during operation in seasonal variation zone: Case study in Nanshibi Tunnel[J]. Journal of Performance of Constructed Facilities, 2021, 35(3): 04021010. doi: 10.1061/(ASCE)CF.1943-5509.0001573
    [4] 王佳亮, 陈亮, 王崇艮. 兰渝线新龙凤隧道涌水分析[J]. 现代隧道技术, 2012, 49(4): 42-45. doi: 10.3969/j.issn.1009-6582.2012.04.009

    Wang J L, Chen L, Wang C G. Analysis of the water inflow in the new Longfen Tunnel on the Lanzhou-Chongqin railway[J]. Modern Tunnelling Technology, 2012, 49(4): 42-45(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6582.2012.04.009
    [5] 张羽军. 湘桂铁路山乾隧道岩溶涌水涌泥原因分析及治理措施[J]. 铁道建筑, 2019, 59(2): 89-93. doi: 10.3969/j.issn.1003-1995.2019.02.22

    Zhang Y J. Cause analysis of water and mud gushing and treatment measures in Shanqian karst tunnel of Hunan-Guangxi railway[J]. Railway Engineering, 2019, 59(2): 89-93(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1995.2019.02.22
    [6] Yang W M, Fang Z D, Yang X, et al. Experimental study of influence of karst aquifer on the law of water inrush in tunnels[J]. Water, 2018, 10(9): 1211. doi: 10.3390/w10091211
    [7] 于正, 杨龙才, 宫全美, 等. 穿越近海破碎带隧道工程风险模糊评价和应用[J]. 地下空间与工程学报, 2019, 15(4): 1246-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904037.htm

    Yu Z, Yang L C, Gong Q M, et al. Risk fuzzy assessment for off shore tunnels crossing fault zones and its application[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1246-1257(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904037.htm
    [8] Chen S, Peng H Y, Yang C, et al. Investigation of the impacts of tunnel excavation on karst groundwater and dependent geo-environment using hydrological observation and numerical simulation: A case from karst anticline mountains of southeastern Sichuan Basin, China. [J]. Environmental Science and Pollution Research International, 2021, 28(30): 40203-40216. doi: 10.1007/s11356-021-13919-1
    [9] Farida M S, El-Dars E, Sami H M. Interpretation of hydrogeochemical data using hierarchical cluster analysis: A case study at Wadi El-Natrun, Egypt[J]. Journal of African Earth Sciences, 2020, 10: 103930.
    [10] 武亚遵, 潘春芳, 林云, 等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报, 2018, 37(5): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htm

    Wu Y Z, Pan C F, Lin Y, et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China coalfield[J]. Geological Science and Technology Information, 2018, 37(5): 191-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htm
    [11] Xu C H, Yu D D, Luo Z J. Recharge sources and genetic model of geothermal water in Tangquan, Nanjing, China[J]. Sustainability, 2021, 13(4): 4449.
    [12] Li D S, Cui B L, Wang Y, et al. Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau[J]. Groundwater, 2021, 59(2): 245-255. doi: 10.1111/gwat.13042
    [13] 马斌, 梁杏, 林丹, 等. 应用2H、18O同位素示踪华北平原石家庄包气带土壤水入渗补给及年补给量确定[J]. 地质科技情报, 2014, 33(3): 163-168, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm

    Ma B, Liang X, Lin D, et al. Application of 2H-18O isotopic in tracing infiltration recharge of soil water and determination of annual recharge in Shijiazhuang vadose zone of North China Plain[J]. Geological Science and Technology Information, 2014, 33(3): 163-168, 174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm
    [14] Saberinasr A, Morsali M, Hashemnejad A, et al. Determining the origin of groundwater elements using hydrochemical data(case study: Kerman water conveyance tunnel)[J]. Environmental Earth Sciences, 2019, 78(6): 198. doi: 10.1007/s12665-019-8182-7
    [15] 张鹏, 端木辉, 徐勇, 等. 汤峪热田地热流体地球化学特征及其补给源分析[J]. 地质科技情报, 2016, 35(2): 192-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602037.htm

    Zhang P, Duan M H, Xu Y, et al. Analysis of Tangyu geothermal fluid geochemical characteristics and source of supply[J]. Geological Science and Technology Information, 2016, 35(2): 192-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602037.htm
    [16] Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, northwestern China[J]. Journal of Arid Land, 2014, 6(4): 378-388. doi: 10.1007/s40333-013-0249-9
    [17] 青海省环境地质调查局. 青海南山关角日吉山地区岩溶水勘查报告[R]. 西宁: 青海省环境地质勘查局, 2017.

    Qinghai Environment Geological Exploration Bureau. Report of Qinghai Nanshan Guanjiao Rijishan karst water exploration[R]. Xining: Qinghai Environmental Geological Exploration Bureau, 2017(in Chinese).
    [18] 高红杰. 关角特长隧道施工地质问题及成因分析[J]. 铁道标准设计, 2016, 60(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201603019.htm

    Gao H J. Geological problems in the construction of Guanjiao supper long tunnel and cause analysis[J]. Railway Standard Design, 2016, 60(3): 87-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201603019.htm
    [19] Wang J, Gu X Q, Liu T J, et al. Study on comprehensive treatment technology of high-speed railway passing through giant karst tunnel[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(5): 052021. doi: 10.1088/1755-1315/570/5/052021
    [20] 谭忠盛, 王秀英, 万飞, 等. 关角隧道突涌水防治技术体系研究[J]. 土木工程学报, 2017, 50(增刊2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htm

    Tan Z S, Wang X Y, Wan F, et al. Research on prevention and control technology system of sudden water inflow of Guanjiao Tunnel[J]. China Civil Engineering Journal, 2017, 50(S2): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htm
    [21] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170: 1088-1090. doi: 10.1126/science.170.3962.1088
    [22] 彭红明, 许伟林, 何青, 等. 布哈河流域中上游地区水文地球化学与同位素特征[J]. 干旱区研究, 2015, 32(5): 1032-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201505028.htm

    Peng H M, Xu W L, He Q, et al. The features of hydrogeochemistry and isotope in the upper reaches of Buhahe basin[J]. Arid Zone Research, 2015, 32(5): 1032-1038(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201505028.htm
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  562
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回