Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai
-
摘要: 涌排水严重影响隧道施工与运行安全,查明隧道涌排水的来源,是隧道防水止水重要科学依据。青海天峻新关角隧道南北洞口处的地下水排水量分别为10 021,60 877 m3/d,两者存在近50 000 m3/d的差异,涌排水量大,且来源不明。基于水文地质条件分析,分别采集了新关角隧道隧址区内大气降水、不同类型地下水和隧道出口涌排水水化学和氢氧稳定同位素样品。样品测试结果显示:新关角隧道北出口涌排水ρ(TDS)为0.44 g/L,2H和18O均值为-52.7‰,-8.3‰;南出口涌排水ρ(TDS)为0.85 g/L,2H和18O均值为-54.8‰,-8.5‰,隧址区基岩裂隙水ρ(TDS)为0.32~1.22 g/L,2H和18O均值为-55.77‰,-8.61‰;岩溶水ρ(TDS)为0.28~0.43 g/L,2H和18O均值为-50.92‰,-8.13‰,冻结层上水ρ(TDS)为0.26~0.48 g/L,2H和18O均值为-45.5‰,-7.6‰。对比分析认为:新关角隧道北出口涌排水主要来源于岩溶水,岩溶水占比为63%~80%,基岩裂隙水占20%~37%;新关角隧道南出口涌排水主要源于基岩裂隙水,基岩裂隙水占72%~88%,岩溶水占比12%~28%。涌水来源识别与水量,可为后期监测站点优化设置及隧道运行期止水工程实施提供科学依据。Abstract: Water inflow and drainage is one of the main factors affecting tunnel construction and safe operation.Finding out the source of groundwater inflow and drainage in tunnel is an important scientific basis for tunnel waterproof and water stop.The problem of water inflow and drainage of New Guanjiao Tunnel in Tianjun is serious.The groundwater discharge at the north outlet reaches 10 021 m3/d and the South outlet reaches 60 877 m3/d.There is a difference of nearly 50 000 m3/d in groundwater drainage.In order to find out the source of water inflow and drainage of Guanjiao tunnel and the reason for the great difference between the north and south water volume, we collecte the hydrogeochemical samples of the main groundwater and tunnel drainage in the tunnel based on the hydrogeological conditions.The results show that: the TDS of the drainage water at the north side of the tunnel is 0.44 g/L and the average hydrogen and oxygen isotopes are -52.7‰ and -8.3‰; TDS of the southern tunnel drainage is 0.85 g/L and the isotopes is -54.8‰ and -8.5‰; TDS of the crevice water is 0.32-1.22 g/L and the isotopes are -55.77‰ and -8.61‰; TDS of the karst water is 0.28-0.43 g/L and the isotopes are -50.92‰ and -8.13‰; TDS of the superpermafrost water is 0.26-0.48 g/L and the isotopes are -45.5‰ and -7.6‰.The main drainage of the north tunnel comes from karst water, the karst water accounts for 63%-80%, the crevice water accounts for 20%-37%;The main drainage of the south tunnel comes from crevice water, the karst water accounts for 12%-28%, the crevice water accounts for 72%-88%.The identification of water inflow source and water quantity can provide a scientific basis for the optimal setting and the implementation of water stop project during tunnel operation.
-
表 1 研究区部分采样点水化学特征
Table 1. Hydrochemical characteristics of main sampling points in the study area
点号 Ca2+ Mg2+ Na+ HCO3- SO42- Cl- ρ(TDS)/(g·L-1) 水化学类型 含水层岩性与地下水类型 ρB/(mg·L-1) TJ142 分水岭北 116.2 63.2 86 402.7 228.1 134.7 0.83 HCO3·SO4-Ca·Mg·Na T1-2xh粉砂质板岩 基岩裂隙水 ZK1 80.2 35.2 44.5 355.6 110.5 46.1 0.49 HCO3·SO4-Ca·Mg TJ62 74.15 12.15 42.33 268.5 28.82 35.45 0.32 HCO3-Ca Sb2变质粉砂岩 TJ121 102.2 40.1 54.8 311.2 175.3 70.9 0.6 HCO3·SO4-Ca·Mg T1-2xh粉砂质板岩 TJ134 152.3 66.8 65.9 463.8 232.9 124.1 0.87 HCO3·SO4-Ca·Mg TJ171 86.2 37.7 123.2 445.4 91.3 124.1 0.69 HCO3·Cl-Na·Ca N2a砾岩 孔隙裂隙水 TJ23 68.1 3.6 18 158.7 67.2 21.3 0.26 HCO3·SO4-Ca T1-2j1结晶灰岩 冻结层上水 TJ34 58.1 3.6 35 158.7 81.7 21.3 0.28 HCO3·SO4-Ca·Na TJ85 92.2 4.9 23 207.5 91.3 24.8 0.34 HCO3·SO4-Ca TJ149 88.2 9.7 14 164.8 117.7 21.3 0.34 HCO3·SO4-Ca TJ5 分水岭北 76.2 10.9 10.3 201.4 57.6 21.3 0.28 HCO3-Ca T1-2j1结晶灰岩 碳酸盐裂隙岩溶水 TJ49 108.2 6.1 11.5 292.9 43.2 24.8 0.34 HCO3-Ca ZK2 90.18 30.38 17.5 268.5 60.04 63.81 0.4 HCO3-Ca·Mg ZK3 62.12 14.58 72 219.7 129.7 35.45 0.43 HCO3·SO4-Ca·Na TJ242 分水岭南 100.1 42.1 60 320.1 172.5 68.5 0.6 HCO3·SO4-Ca·Mg Cgc石英砂岩 基岩裂隙水 二郎洞 188.6 102.5 61.5 395.4 551.4 99.6 1.22 SO4·HCO3-Ca·Mg Cpt变质岩 TJ201 82.16 23.09 21.67 207.5 132.1 24.82 0.39 HCO3-Ca P1b结晶灰岩 裂隙岩溶水 TJ217 108.2 18.2 24 183.1 187.3 31.9 0.47 SO4·HCO3-Ca TJ246 92.2 9.7 52.8 128.1 235.3 21.3 0.48 SO4·HCO3-Ca·Na Cpt变砂岩 冻结层上水 TJ271 72.1 6.1 67 97.6 254.6 14.2 0.47 SO4-Ca·Na 老隧道北 98.0 25.1 19 295.1 48 53.2 0.39 HCO3-Ca·Mg 隧道排水 新隧道北 80.6 20.5 40 210.5 151 38.5 0.44 HCO3·SO4-Ca 老隧道南口 84.5 27.5 40 287.6 120.1 40.8 0.46 HCO3·SO4-Ca·Mg 新隧道南口 131.5 57.7 75.95 335 350 70 0.85 SO4·HCO3-Ca·Mg 表 2 研究区同位素组成特征
Table 2. Isotopic composition of the study area
取样位置或样品编号 分析项目 备注 取样位置或样品编号 分析项目 备注 δD/‰ δ18O/‰ 3H/TU(ΔTU) δD/‰ δ18O/‰ 3H/TU(ΔTU) 关角绞合木 -13 -3.9 雨水 TJ142 -54.5 -8.2 9.6(1.0) 基岩裂隙水 新隧道北口 -52.7 -8.3 11.3(3.5) 隧道排水 ZK1 -55.6 -8.74 8.4(0.3) 新隧道南口 -54.8 -8.5 10(1.1) TJ260 -57.2 -8.9 9.2(1.0) 老隧道北口 -52.4 -8.3 11.6(1.2) TJ5 -47.4 -7.7 14.1(1.2) 裂隙岩溶水 老隧道南口 -52.1 -8.2 12(0.8) TJ143 -51.6 -7.9 14.9(1.5) TJ34 -43.1 -7.4 17.1(1.3) 冻结层上水 TJ79 -51.2 -8.2 11.6(1.2) TJ64 -38.6 -6.5 16.9(1.0) ZK2 -52.6 -8.43 9.5(1.0) TJ217 -53.7 -8.4 12.7(0.8) ZK3-1 -51.42 -8.25 11.5(1.1) TJ271 -46.6 -8.1 11(0.8) ZK3-2 -51.27 -8.31 12.6(1.3) 表 3 隧址区地下水及隧道排水主要离子及元素测试结果
Table 3. Average content of main ions and elements in groundwater and tunnel drainage
地貌单元 地下水类型或位置 ρ(TDS)/(g·L-1) γCl-/γHCO3- γMg2+/γCa2+ δD/‰ δ18O/‰ 3H/Tu 分水岭北 岩溶水 0.370 0.287 0.361 -50.92 -8.13 12.37 基岩裂隙水 0.637 0.421 0.664 -55.77 -8.61 9.07 老隧道北口 0.390 0.310 0.425 -52.4 -8.3 11.6 新隧道北口 0.440 0.314 0.424 -52.7 -8.3 11.3 分水岭南 岩溶水 0.390 0.206 0.468 -50.92 -8.13 12.37 基岩裂隙水 0.910 0.404 0.835 -55.77 -8.61 9.07 老隧道南口 0.460 0.244 0.542 -52.1 -8.2 12 新隧道南口 0.850 0.359 0.731 -54.8 -8.5 10 表 4 不同指标计算出的隧道涌排水中岩溶水占比
Table 4. Proportion calculated by various indicators of karst water content in tunnel inflow
ρ(TDS) γCl-/γHCO3- γMg2+/γCa2+ δD δ18O 3H 占比/% 老隧道北口 93 83 79 69 65 77 新隧道北口 74 80 79 63 65 68 老隧道南口 87 81 80 76 86 89 新隧道南口 12 23 28 20 24 28 -
[1] 杨艳娜. 西南山区岩溶隧道涌突水灾害危险性评价系统研究[D]. 成都: 成都理工大学, 2009.Yang Y N. Resarch of karst tunnel water bursting hazard risk assessment system in the southwest mountainous area[D]. Chengdu: Chengdu University of Technology, 2009(in Chinese with English abstract). [2] 金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 北京: 中国地质科学院, 2007.Chen J F. Regularity of karst development along the Yichang-Wanzhou railway and its influence on tunnel construction[D]. Beijing: Chinese Academy of Geological Sciences, 2007(in Chinese with English abstract). [3] Lan X D, Zhang X, Yin Z C, et al. Mitigation of karst tunnel water inrush during operation in seasonal variation zone: Case study in Nanshibi Tunnel[J]. Journal of Performance of Constructed Facilities, 2021, 35(3): 04021010. doi: 10.1061/(ASCE)CF.1943-5509.0001573 [4] 王佳亮, 陈亮, 王崇艮. 兰渝线新龙凤隧道涌水分析[J]. 现代隧道技术, 2012, 49(4): 42-45. doi: 10.3969/j.issn.1009-6582.2012.04.009Wang J L, Chen L, Wang C G. Analysis of the water inflow in the new Longfen Tunnel on the Lanzhou-Chongqin railway[J]. Modern Tunnelling Technology, 2012, 49(4): 42-45(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6582.2012.04.009 [5] 张羽军. 湘桂铁路山乾隧道岩溶涌水涌泥原因分析及治理措施[J]. 铁道建筑, 2019, 59(2): 89-93. doi: 10.3969/j.issn.1003-1995.2019.02.22Zhang Y J. Cause analysis of water and mud gushing and treatment measures in Shanqian karst tunnel of Hunan-Guangxi railway[J]. Railway Engineering, 2019, 59(2): 89-93(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1995.2019.02.22 [6] Yang W M, Fang Z D, Yang X, et al. Experimental study of influence of karst aquifer on the law of water inrush in tunnels[J]. Water, 2018, 10(9): 1211. doi: 10.3390/w10091211 [7] 于正, 杨龙才, 宫全美, 等. 穿越近海破碎带隧道工程风险模糊评价和应用[J]. 地下空间与工程学报, 2019, 15(4): 1246-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904037.htmYu Z, Yang L C, Gong Q M, et al. Risk fuzzy assessment for off shore tunnels crossing fault zones and its application[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1246-1257(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904037.htm [8] Chen S, Peng H Y, Yang C, et al. Investigation of the impacts of tunnel excavation on karst groundwater and dependent geo-environment using hydrological observation and numerical simulation: A case from karst anticline mountains of southeastern Sichuan Basin, China. [J]. Environmental Science and Pollution Research International, 2021, 28(30): 40203-40216. doi: 10.1007/s11356-021-13919-1 [9] Farida M S, El-Dars E, Sami H M. Interpretation of hydrogeochemical data using hierarchical cluster analysis: A case study at Wadi El-Natrun, Egypt[J]. Journal of African Earth Sciences, 2020, 10: 103930. [10] 武亚遵, 潘春芳, 林云, 等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报, 2018, 37(5): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htmWu Y Z, Pan C F, Lin Y, et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China coalfield[J]. Geological Science and Technology Information, 2018, 37(5): 191-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805027.htm [11] Xu C H, Yu D D, Luo Z J. Recharge sources and genetic model of geothermal water in Tangquan, Nanjing, China[J]. Sustainability, 2021, 13(4): 4449. [12] Li D S, Cui B L, Wang Y, et al. Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau[J]. Groundwater, 2021, 59(2): 245-255. doi: 10.1111/gwat.13042 [13] 马斌, 梁杏, 林丹, 等. 应用2H、18O同位素示踪华北平原石家庄包气带土壤水入渗补给及年补给量确定[J]. 地质科技情报, 2014, 33(3): 163-168, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htmMa B, Liang X, Lin D, et al. Application of 2H-18O isotopic in tracing infiltration recharge of soil water and determination of annual recharge in Shijiazhuang vadose zone of North China Plain[J]. Geological Science and Technology Information, 2014, 33(3): 163-168, 174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403023.htm [14] Saberinasr A, Morsali M, Hashemnejad A, et al. Determining the origin of groundwater elements using hydrochemical data(case study: Kerman water conveyance tunnel)[J]. Environmental Earth Sciences, 2019, 78(6): 198. doi: 10.1007/s12665-019-8182-7 [15] 张鹏, 端木辉, 徐勇, 等. 汤峪热田地热流体地球化学特征及其补给源分析[J]. 地质科技情报, 2016, 35(2): 192-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602037.htmZhang P, Duan M H, Xu Y, et al. Analysis of Tangyu geothermal fluid geochemical characteristics and source of supply[J]. Geological Science and Technology Information, 2016, 35(2): 192-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602037.htm [16] Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, northwestern China[J]. Journal of Arid Land, 2014, 6(4): 378-388. doi: 10.1007/s40333-013-0249-9 [17] 青海省环境地质调查局. 青海南山关角日吉山地区岩溶水勘查报告[R]. 西宁: 青海省环境地质勘查局, 2017.Qinghai Environment Geological Exploration Bureau. Report of Qinghai Nanshan Guanjiao Rijishan karst water exploration[R]. Xining: Qinghai Environmental Geological Exploration Bureau, 2017(in Chinese). [18] 高红杰. 关角特长隧道施工地质问题及成因分析[J]. 铁道标准设计, 2016, 60(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201603019.htmGao H J. Geological problems in the construction of Guanjiao supper long tunnel and cause analysis[J]. Railway Standard Design, 2016, 60(3): 87-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201603019.htm [19] Wang J, Gu X Q, Liu T J, et al. Study on comprehensive treatment technology of high-speed railway passing through giant karst tunnel[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(5): 052021. doi: 10.1088/1755-1315/570/5/052021 [20] 谭忠盛, 王秀英, 万飞, 等. 关角隧道突涌水防治技术体系研究[J]. 土木工程学报, 2017, 50(增刊2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htmTan Z S, Wang X Y, Wan F, et al. Research on prevention and control technology system of sudden water inflow of Guanjiao Tunnel[J]. China Civil Engineering Journal, 2017, 50(S2): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2001.htm [21] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170: 1088-1090. doi: 10.1126/science.170.3962.1088 [22] 彭红明, 许伟林, 何青, 等. 布哈河流域中上游地区水文地球化学与同位素特征[J]. 干旱区研究, 2015, 32(5): 1032-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201505028.htmPeng H M, Xu W L, He Q, et al. The features of hydrogeochemistry and isotope in the upper reaches of Buhahe basin[J]. Arid Zone Research, 2015, 32(5): 1032-1038(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201505028.htm