留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下水化学组成的时空聚类分析与多级嵌套水流系统识别

李舒 杨佳雪 李小倩 张俊 潘国芳

李舒, 杨佳雪, 李小倩, 张俊, 潘国芳. 地下水化学组成的时空聚类分析与多级嵌套水流系统识别[J]. 地质科技通报, 2022, 41(1): 309-318. doi: 10.19509/j.cnki.dzkq.2022.0028
引用本文: 李舒, 杨佳雪, 李小倩, 张俊, 潘国芳. 地下水化学组成的时空聚类分析与多级嵌套水流系统识别[J]. 地质科技通报, 2022, 41(1): 309-318. doi: 10.19509/j.cnki.dzkq.2022.0028
Li Shu, Yang Jiaxue, Li Xiaoqian, Zhang Jun, Pan Guofang. Lumped cluster analysis for understanding spatial and temporal patterns of groundwater geochemistry and hierarchically nested flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 309-318. doi: 10.19509/j.cnki.dzkq.2022.0028
Citation: Li Shu, Yang Jiaxue, Li Xiaoqian, Zhang Jun, Pan Guofang. Lumped cluster analysis for understanding spatial and temporal patterns of groundwater geochemistry and hierarchically nested flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 309-318. doi: 10.19509/j.cnki.dzkq.2022.0028

地下水化学组成的时空聚类分析与多级嵌套水流系统识别

doi: 10.19509/j.cnki.dzkq.2022.0028
基金项目: 

国家自然科学基金项目 41672245

干旱-半干旱区地下水与生态重点实验室开发基金 KLGEAS201602

详细信息
    作者简介:

    李舒(1999-), 女, 现正攻读水文地质学专业硕士学位, 主要从事水文地球化学、同位素水文学研究工作。E-mail: lishuly@163.com

    通讯作者:

    李小倩(1982-), 女, 副教授, 主要从事水文地球化学、同位素水文学等方面的教学与研究工作。E-mail: lixiaoqian@cug.edu.cn

  • 中图分类号: P641

Lumped cluster analysis for understanding spatial and temporal patterns of groundwater geochemistry and hierarchically nested flow systems

  • 摘要: 水文地球化学是识别地下水流系统的重要方法,然而区域尺度上多级嵌套地下水流系统的复杂性使地下水化学组成的分析和解释难度增加。以鄂尔多斯北部盆地湖泊集中区典型的胡同察汗淖地下水流系统为例,基于丰水期和枯水期3个期次不同深度地下水样品的物理化学数据,应用时空聚类与主成分分析方法,揭示地下水化学组成的空间分布特征、变化规律及其作用机制,分析水化学时空聚类结果对多级嵌套地下水流系统划分的可行性。该聚类结果将地下水样品分为3类,其中C1为以Na-HCO3型为主的深层地下水,具有偏负的氢氧同位素组成(δD < -70‰,δ18O < -9‰)和极低浓度的NO3-;C2为Ca-HCO3为主的浅层地下水,具有偏正的氢氧同位素组成(δD > -70‰,δ18O > -9‰)和高浓度的NO3-;而C3呈无优势阳离子、δD和δ18O变化范围大且显著线性相关等深、浅地下水混合特征。呈南北条带分布在苏贝淖-胡同察汗淖排泄区的C2和部分C3水化学组成有一定的季节变化。研究验证了研究区受地形和湖泊排泄控制的浅层局部和深层区域地下水流系统的空间分布,识别了苏贝淖-胡同察汗淖排泄区受浅循环和深循环共同影响的强烈作用带,证明了水化学时空聚类方法识别多级嵌套地下水流系统的可行性。

     

  • 图 1  研究区地形高程图(a)和地下水等水位线图(b)及剖面A-B地下水流系统示意图(c)

    Figure 1.  Topographic elevation map(a), groundwater table contours map(b), and cross-section with speculated flow directions indicating groundwater flow systems(c) in the study area

    图 2  地下水样品点分布图

    Figure 2.  Distribution of groundwater samples

    图 3  聚类树状图(a)与分类群组化学组成的Stiff图(b)

    Figure 3.  Clustered dendrogram (a) and stiff diagram of the chemical composition of clusters (b)

    图 4  主成分间的双坐标图

    Figure 4.  Two-coordinate plot between principal components

    图 5  地下水化学组成的Piper图

    Figure 5.  Piper diagram of the chemical composition of groundwater

    图 6  聚类群组C1、C2和C3地下水主要物理化学指标箱式图

    注: 箱图中o代表样本数据中大于1.5倍四分位数间距的异常值; *代表样本数据中大于3倍四分位数间距的极端值

    Figure 6.  Box plots of the main physicochemical indicators of groundwater in C1, C2 and C3

    图 7  C1地下水阳离子交换作用[(Ca2++Mg2+)-(HCO3-+SO42-)]和[Na++K+-Cl-]毫克当量关系图(a)以及氯碱指数CAI-2和CAI-1关系图(b)

    Figure 7.  Bivariate diagrams for cation exchange of groundwater in C1, relationships between [(Ca2++Mg2+)-(HCO3-+SO42-)] and [Na++K+-Cl-](a), CAI-2 and CAI-1(b)

    图 8  研究区地下水样品的氢氧同位素组成关系图

    Figure 8.  Hydrogen and oxygen isotope composition of groundwater samples in the study area

    图 9  不同采样期取样点空间分布图

    a.2016年9月;b.2017年4月;c.2017年9月

    Figure 9.  Spatial distribution of sampling points in different sampling periods

  • [1] 梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm

    Liang X, Zhang R Q, Niu H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm
    [2] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.

    Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 7th Edition. Beijing: Geological Press, 2018(in Chinese).
    [3] 张人权, 梁杏, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Zhang R Q, Liang X, Jin M G. Groundwater flow systems: Theorety, application and survey[M]. Beijing: Geological Press, 2015(in Chinese).
    [4] Currell M J, Han D M, Chen Z Y, et al. Sustainability of groundwater usage in northern China: Dependence on palaeowaters and effects on water quality, quantity and ecosystem health[J]. Hydrological Processes, 2012, 26(26): 4050-4066. doi: 10.1002/hyp.9208
    [5] Gan Y Q, Zhao K, Deng Y M, et al. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China[J]. Hydrogeology Journal, 2018, 26(5): 1609-1623. doi: 10.1007/s10040-018-1778-2
    [6] Xiao K, Li H L, Wilson A M, et al. Tidal groundwater flow and its ecological effects in a brackish marsh at the mouth of a large sub-tropical river[J]. Journal of Hydrology, 2017, 555: 198-212. doi: 10.1016/j.jhydrol.2017.10.025
    [7] Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [8] Tóth J. Gravitational system of groundwater: Theory, evaluation, utilization[M]. Cambridge: Cambridge University Press, 2009.
    [9] Müller I, Havril T, Galsa A, et al. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction[J]. Journal of Hydrology, 2016, 539: 330-344. doi: 10.1016/j.jhydrol.2016.05.038
    [10] Chen J C, Kuang X X, Michele L, et al. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100871. doi: 10.1016/j.ejrh.2021.100871
    [11] Olea-Olea S, Escolero O, Mahlknecht J, et al. Identification of the components of a complex groundwater flow system subjected to intensive exploitation[J]. Journal of South American Earth Sciences, 2020, 98(C): 102434.
    [12] 张俊, 侯荣哲, 尹立河, 等. 盆地地下水流系统形成与影响因素分析[J]. 水文地质工程地质, 2017, 44(4): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704002.htm

    Zhang J, Hou R Z, Yin L H, et al. Formation and influencing factors of regional groundwater flow systems[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 8-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704002.htm
    [13] Mádl-Szönyi J, Tóth Á. Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region[J]. Hydrogeology Journal, 2015, 23(7): 1-22.
    [14] Gebere A, Kawo N S, Karuppannan S, et al. Numerical modeling of groundwater flow system in the Modjo River catchment, Central Ethiopia[J]. Modeling Earth Systems and Environment, 2020, 7(4): 1-15.
    [15] Dai X, Xie Y Q, Simmons C T, et al. Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling[J]. Journal of Hydrology, 2021, 594: 125950. doi: 10.1016/j.jhydrol.2020.125950
    [16] Tóth J. Mapping and interpretation of field phenomena for groundwater reconnaissance in a prairie environment, Alberta, Canada[J]. International Association of Scientific Hydrology Bulletin, 1966, 11(2): 20-68. doi: 10.1080/02626666609493458
    [17] Zhang J, Wang X S, Yin L, et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems[J]. Geophysical Research Letters, 2021, 48(16): e 2020GL092337.
    [18] Jiang X W, Wan L, Wang J Z, et al. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method[J]. Geophysical Research Letters, 2014, 41(8): 2812-2819. doi: 10.1002/2014GL059579
    [19] Wang H, Jiang X W, Wan L, et al. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin[J]. Journal of Hydrology, 2015, 527: 433-441. doi: 10.1016/j.jhydrol.2015.04.063
    [20] Pan G F, Li X Q, Zhang J, et al. Groundwater-flow-system characterization with hydrogeochemistry: A case in the lakes discharge area of the Ordos Plateau, China[J]. Hydrogeology Journal, 2019, 27(2): 669-683. doi: 10.1007/s10040-018-1888-x
    [21] Carrillo-Rivera J J, Varsanyi I, Kovacs L O, et al. Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments[J]. Water Air & Soil Pollution, 2007, 184(1/4): 77-103.
    [22] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001004.htm

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001004.htm
    [23] 魏兴, 周金龙, 梁杏, 等. 新疆喀什三角洲地下水流系统的水化学和同位素标记[J]. 地球科学, 2020, 45(5): 1807-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005023.htm

    Wei X, Zhou J L, Liang X, et al. Hydrochemical and isotopic markers of groundwater flow systems in the Kashagar Delta area in Xinjiang[J]. Earth Science, 2020, 45(5): 1807-1817(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005023.htm
    [24] 吴春勇, 苏小四, 郭金淼, 等. 鄂尔多斯沙漠高原白垩系地下水水化学演化的多元统计分析[J]. 世界地质, 2011, 30(2): 244-253. doi: 10.3969/j.issn.1004-5589.2011.02.013

    Wu C Y, Su X S, Guo J M, et al. Multivariate statistical analysis of hydrogeochemical evolution of groundwater in Cretaceous aquifer Ordos desert plateau[J]. Global Geology, 2011, 30(2): 244-253(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2011.02.013
    [25] 林永生, 裴建国, 杜毓超, 等. 基于多元统计方法的岩溶地下水化学特征及影响因素分析[J]. 环境化学, 2016, 35(11): 2394-2401. doi: 10.7524/j.issn.0254-6108.2016.11.2016032801

    Lin Y S, Pei J G, Du Y C, et al. Hydrochemical characteristics of karst groundwater and their influencing factors based on multiple statistical analysis[J]. Environmental Chemistry, 2016, 35(11): 2394-2401(in Chinese with English abstract). doi: 10.7524/j.issn.0254-6108.2016.11.2016032801
    [26] Belkhiri L, Boudoukha A, Mouni L A. Multivariate statistical analysis of groundwater quality data[J]. International Journal of Environmental, 2011, 5(2): 537-544.
    [27] Roger P C, Julia P Á, Ye M, et al. Groundwater quality: Analysis of its temporal and spatial variability in a karst aquifer[J]. Groundwater, 2018, 56(1): 62-72. doi: 10.1111/gwat.12546
    [28] Yang J, Ye M, Tang Z H, et al. Using cluster analysis for understanding spatial and temporal patterns and controlling factors of groundwater geochemistry in a regional aquifer[J]. Journal of Hydrology, 2020, 583: 124594. doi: 10.1016/j.jhydrol.2020.124594
    [29] 张俊, 刘天罡, 董佳秋, 等. 含水层层状非均质对地下水流系统的影响[J]. 中国地质, 2020, 47(6): 1715-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006010.htm

    Zhang J, Liu T G, Dong J Q, et al. The impact of aquifer layered heterogeneity on groundwater flow system[J]. Geology in China, 2020, 47(6): 1715-1725(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006010.htm
    [30] 孙芳强. 鄂尔多斯盆地都思兔河流域地下水循环及生态环境效应研究[D]. 西安: 长安大学, 2010.

    Sun F Q. Study on groundwater circulation and ecological effects in Dusitu River basin of Ordos Basin[D]. Xi'an: Chang'an University, 2010(in Chinese with English abstract).
    [31] 张晶, 刘运德, 周爱国, 等. 硝酸盐污染地下水中溶解性有机质光谱特征及其指示意义: 以鄂尔多斯盆地北部湖泊集中区为例[J]. 地质科技情报, 2019, 38(4): 262-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904028.htm

    Zhang J, Liu Y D, Zhou A G, et al. Spectral characteristics of dissolved organic matter and their implications in groundwater contaminated by nitrate of lake concentration area in northern Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(4): 268-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904028.htm
    [32] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105030.htm

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105030.htm
    [33] 梁辉. 鄂尔多斯盆地北部湖泊集中区地下水水化学特征和硫酸盐来源同位素识别[D]. 武汉: 中国地质大学(武汉), 2017.

    Liang H. Characterization of groundwater chemistry and isotopic identification of sulfate sources in the lake concentration area in the northern Ordos Basin[D]. Wuhan: China University of Geosciences(Wuhan), 2017(in Chinese with English abstract).
    [34] 连英立, 张光辉, 聂振龙, 等. 西北内陆张掖盆地地下水温度变化特征及主要影响因素识别[J]. 干旱区地理, 2011(3): 391-399. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201103002.htm

    Lian Y L, Zhang G H, Nie Z L, et al. Groundwater temperature variation characteristics and main influence factors identification in Zhangye Basin of northwest China[J]. Arid Land Geography, 2011(3): 391-399(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201103002.htm
    [35] 吴志伟, 宋汉周. 地下水温度示踪理论与方法研究进展[J]. 水科学进展, 2011, 22(5): 733-740. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201105023.htm

    Wu Z W, Song H Z. Temperature as a groundwater tracer: Advances in theory and methodology[J]. Advances in Water Science, 2011, 22(5): 733-740(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201105023.htm
    [36] Yin L H, Hou G C, Su X S, et al. Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: Implications with respect to groundwater recharge and circulation[J]. Hydrogeology Journal, 2011, 19(2): 429-443. doi: 10.1007/s10040-010-0671-4
  • 加载中
图(9)
计量
  • 文章访问数:  862
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回