留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究

胡成 陈刚 曹孟雄 唐连松 郑可 王继刚

胡成, 陈刚, 曹孟雄, 唐连松, 郑可, 王继刚. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126, 136. doi: 10.19509/j.cnki.dzkq.2022.0029
引用本文: 胡成, 陈刚, 曹孟雄, 唐连松, 郑可, 王继刚. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126, 136. doi: 10.19509/j.cnki.dzkq.2022.0029
Hu Cheng, Chen Gang, Cao Mengxiong, Tang Liansong, Zheng Ke, Wang Jigang. A case study on water sealing efficieny of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126, 136. doi: 10.19509/j.cnki.dzkq.2022.0029
Citation: Hu Cheng, Chen Gang, Cao Mengxiong, Tang Liansong, Zheng Ke, Wang Jigang. A case study on water sealing efficieny of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126, 136. doi: 10.19509/j.cnki.dzkq.2022.0029

基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究

doi: 10.19509/j.cnki.dzkq.2022.0029
基金项目: 

国家自然科学基金项目 41772259

详细信息
    作者简介:

    胡成(1976-), 男, 副教授, 主要从事工程水文地质、地下水数值模拟等方面的研究工作。E-mail: hu_cheng@cug.edu.cn

    陈刚(1967-), 男, 副教授, 主要从事数值模拟及环境地质方面的研究工作。E-mail: chengang@cug.edu.cn

  • 中图分类号: P641

A case study on water sealing efficieny of groundwater storage caverns using discrete fracture network method and flow numerical simulation

  • 摘要: 水封性是保证地下水封洞库安全运营的关键,目前研究地下水封洞库水封性的主要难点在于裂隙岩体含水层强烈的非均质性和各向异性。以某地下水封洞库工程为背景,通过实测裂隙几何参数分析裂隙发育特征,建立了研究区离散裂隙网络模型。之后对研究区进行网格化划分计算了各单元体渗透系数张量,基于对裂隙渗流基本规律的理解和假设建立了研究区高精度的非均质各向异性渗流模型,并对研究区渗透性特征进行分析。通过建立非均质各向异性渗流模型对水幕系统水封性能进行了探讨并与传统均质各向同性渗流模型进行对比分析,利用该模型可以弥补传统均质各向同性渗流模型的不足,更加准确地评价由于裂隙岩体非均质各向异性造成的储品泄漏风险。

     

  • 图 1  库址区位置与水文地质简图

    Qhl.第四系临沂组;Qhb.第四系白云湖组; ${\rm{Q}}\hat s$第四系山前组;Pt1F.古元古界粉子山群白云质大理岩、硅质大理岩;γ52(1).燕山早期含中粗粒黑云母二长花岗岩

    Figure 1.  A brief map of the location of the storage site and hydrogeological scheme

    图 2  裂隙统计分区示意图

    Figure 2.  Division diagram of rockmass fracture statistics

    图 3  裂隙模拟分区示意图

    Figure 3.  Division diagram of discrete fracture model

    图 4  加入F9断层后的研究区裂隙网络模型

    Figure 4.  Fracture network model with the F9 fault added in the study area

    图 5  模拟区各单元体渗透系数张量的分量

    Figure 5.  Components of the permeability coefficient tensor of each unit in the simulation zone

    图 6  模拟渗透系数场

    Figure 6.  Permeability tensor components of simutation cells from discrete fracture network model

    图 7  均质各向同性水幕孔间隔15 m流场图

    Figure 7.  Planar flow field map with homogeneous isotropic permeability and 15 m-interval water curtain holes

    图 8  均质各向同性水幕孔间隔15 m流场剖面图

    Figure 8.  Flow field section map with homogeneous isotropic permeability and 15 m-interval water curtain holes

    图 9  水幕系统分区示意图

    Figure 9.  Division diagram of water curtain system

    图 10  水幕孔间距15 m水幕压力0.7 MPa时水幕层模拟水头与洞库运营阶段的水幕低效区示意图

    Figure 10.  Simulated hydraulic head and low hydraulic efficiency zones of water curtain layer with 0.7 MPa hydraulic pressure and 15 m-interval water curtain broeholes

    图 11  水幕孔间距15 m水幕压力0.8 MPa时水幕层模拟水头与洞库运营阶段的水幕低效区示意图

    Figure 11.  Simulated hydraulic head and low hydraulic efficiency zones of water curtain layer with 0.8 MPa hydraulic pressure and 15 m-interval water curtain broeholes

    图 12  水幕孔间距15 m水幕压力0.9 MPa时水幕层模拟水头示意图

    Figure 12.  Diagram of simulation hydraulic head of water curtain layer with 0.9 MPa hydraulic pressure and 15 m-interval water curtain boreholes

  • [1] 洪开荣. 大型地下水封洞库修建技术[M]. 第1版. 北京: 中国铁道出版社, 2013.

    Hong K R. Construction technology of large underground water-sealed cavern[M]. 1st Edition. Beijing: China Railway Publishing House, 2013(in Chinese).
    [2] 张立. 大型地下水封石油洞库渗流场演化及水封性研究[D]. 济南: 山东大学, 2013.

    Zhang L. Research on seepage field evolution and water sealing property of large underground water-sealed petroleum caverns[D]. Jinan: Shandong University, 2013(in Chinese with English abstract).
    [3] Wittke W, Louis C, Wittke W, et al. Etude experimentale des ecoulements D'eau Dans Un massif rocheux fissure, Tachien Project, Formose[J]. Géotechnique, 1971, 21(1): 29-42. doi: 10.1680/geot.1971.21.1.29
    [4] 田洪圆. 裂隙岩体渗透特性与渗流运动数值模拟研究[D]. 辽宁大连: 大连理工大学, 2017.

    Tian H Y. Numerical simulation of seepage characteristics and seepage movement of fractured rock mass[D]. Dalian, Liaoning: Dalian University of Technology, 2017(in Chinese with English abstract).
    [5] 庞家伟, 丁国平, 陈刚, 等. 地下水封洞库水位降深与涌水量的数值分析[J]. 油气储运, 2013, 32(9): 1007-1011, 1017. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201309020.htm

    Pang J W, Ding G P, Chen G, et al. Numerical analysis of water level drop and water inflow in underground water-sealed cavern[J]. Oil & Gas Storage and Transportation, 2013, 32(9): 1007-1011, 1017(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201309020.htm
    [6] 黎照洪, 胡成, 陈刚, 等. 烟台水封能源洞库水幕钻孔布设方案优化[J]. 地质科技情报, 2016, 35(6): 212-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606030.htm

    Li Z H, Hu C, Chen G, et al. Seepage analysis of water-sealed petroleum storage cavern based on the theory of discrete crack network model[J]. Geological Science and Technology Information, 2016, 35(6): 212-217(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606030.htm
    [7] 李卫明. 岩体裂隙对地下水封油库水封性能影响研究[D]. 北京: 中国地质大学(北京), 2015.

    Li W M. Study on influence of rock fracture on water sealing performance of underground water sealing oil storage[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract).
    [8] Sagar B, Runchal A. Permeability of fractured rock: Effect of fracture size and data uncertainties[J]. Water Resources Research, 1982, 18(2): 266-274. doi: 10.1029/WR018i002p00266
    [9] Long J C S, Witherspoon P A. The relationship of the degree of interconnection to permeability in fractured networks[J]. Journal of Geophysical Research, 1985, 90(B4): 3087-3098. doi: 10.1029/JB090iB04p03087
    [10] Goodall D C, Aberg B, Brekke T L, et al. Fundamentals of gas containment in unlined rock caverns[J]. Rock Mechanics and Rock Engineering, 1988, 21(4): 235-258. doi: 10.1007/BF01020278
    [11] Yager R M, Voss C L, Southworth S. Comparison of alternative representations of hydraulic-conductivity anisotropy in folded fractured-sedimentary rock: Modeling groundwater flow in the Shenandoah Valley (USA)[J]. Hydrogeology Journal, 2009, 17(5): 1111-1131. doi: 10.1007/s10040-008-0431-x
    [12] Lin F, Ren F, Luan H B, et al. Effectiveness analysis of water-sealing for underground LPG storage[J]. Tunnelling and Underground Space Technology, 2016, 51: 270-290. doi: 10.1016/j.tust.2015.10.039
    [13] 马秀媛, 张立, 苏强, 等. 大型地下水封石油洞库水幕系统优化设计研究[J]. 岩土力学, 2016, 37(3): 776-782, 882. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603022.htm

    Ma X Y, Zhang L, Su Q, et al. Optimum design research on water curtain system in large underground water-sealed oil storage cavern rock and soil mechanics[J]. Rock and Soil Mechanics, 2016, 37(3): 776-782, 882(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603022.htm
    [14] 杨荣. 强烈非均质条件下地下水封洞库LNAPLs运移特征研究[D]. 武汉: 中国地质大学(武汉), 2018.

    Yang R. Study on migration characteristics of LNAPLs in underground water-sealed cavern under strong heterogeneous conditions[D]. Wuhan: China University of Geosciences (Wuhan), 2018(in Chinese with English abstract).
    [15] 田洪圆. 裂隙岩体渗透特性与渗流运动数值模拟研究[D]. 辽宁大连: 大连理工大学, 2017.

    Tian H Y. Numerical simulation of seepage characteristics and seepage motion of fractured rock mass[D]. Dalian, Liaoning: Dalian University of Technology, 2017(in Chinese with English abstract).
    [16] 杨凯, 赵晓, 张文辉, 等. 大型地下石洞油气库人工水幕技术[J]. 长江科学院院报, 2013, 30(9): 89-92. doi: 10.3969/j.issn.1001-5485.2013.09.018

    Yang K, Zhao X, Zhang W H, et al. Technology of artificial water curtain in large underground oil and gas storage cavern[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(9): 89-92(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5485.2013.09.018
    [17] 王忠亮. 万华地下水封(液化气)洞库裂隙岩体渗透场特征: 各向异性、空间变异性及顺序指示模拟[D]. 武汉: 中国地质大学(武汉), 2012.

    Wang Z L. Seepage field characteristics of fractured rock mass in Wanhua underground water-sealed (liquefied gas) cavern: Anisotropy, spatial variability and sequential indication simulation[D]. Wuhan: China University of Geosciences(Wuhan), 2012(in Chinese with English abstract).
    [18] Yang H S, Kang J G, Kim K S, et al. Groundwater flow characterization in the vicinity of the underground caverns in fractured rock masses by numerical modeling[J]. Geosciences Journal, 2004, 8(4): 401-413. doi: 10.1007/BF02910476
    [19] Goodman R E, Smith H R. RQD and fracture spacing[J]. Journal of the Geotechnical Engineering Division, 1980, 106: 191-193. doi: 10.1061/AJGEB6.0000921
    [20] Sen Z, Kazi A. Discontinuity spacing and RQD estimates from finite length scanline[J]. Inter. Journal Rock Mech. Min. Sei. and Geomeeh. Abstr., 1984, 21: 203-212. doi: 10.1016/0148-9062(84)90797-6
    [21] Pulley S, Foster I, Antunes P. The application of sediment fingerprinting to floodplain and lake sediment cores: Assumptions and uncertainties evaluated through case studies in the Nene Basin, UK[J]. Journal of Soils and Sediments, 2015, 15(10): 2132-2154. doi: 10.1007/s11368-015-1136-0
    [22] Rehbinder G, Karlsson R, Dahlkild A. A study of a water curtain around a gas store in rock[J]. Applied Scientific Research, 1988, 45(2): 107-127. doi: 10.1007/BF00386207
    [23] Miller S M. A statistieal method to evaluate homogeneity of structural populations[J]. Mathematical Geology, 1983, 15(2): 317-328. doi: 10.1007/BF01036073
  • 加载中
图(12)
计量
  • 文章访问数:  594
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回