Interaction between seepage and temperature fields in different groundwater flow systems
-
摘要: 在地热资源丰富的地区,需要研究不同地下水流系统发育模式下渗流场和温度场的互相影响。基于二维潜水盆地多源汇的数值模拟和室内砂箱实验,改变降雨入渗强度,通过砂箱底部加温研究上下边界不同温度差条件下的渗流场和温度场的变化。研究结果表明:①随着降雨入渗强度加大,地下水流速增大,地下水流系统由单一区域系统向复杂的局部+区域、局部+中间+区域多级嵌套系统转化,水流对温度的再分配影响变大;②补给区等温线受下降水流影响下移,排泄区等温线受上升水流影响上抬,其中区域补给区和区域排泄区温度变化幅度最大;③砂箱底部加热后,含水层潜水面下降,地下水流速增大,流线循环深度整体变大,滞留带范围缩小。温度差是地热丰富地区的地下水流系统研究中不可忽视的驱动力。Abstract: In the regions with rich geothermal resources, it is necessary to study the interaction between the seepage and temperature fields under different groundwater flow systems.Based on numerical simulation and sandbox experiments in a two-dimensional unconfined groundwater basin with multi-sources and sinks, we changed the rainfall infiltration intensity and studied the changes of seepage and temperature fields under different temperature difference between surface and bottom by heating the sandbox bottom.The results showed that with the increasing of the rainfall infiltration intensity, the groundwater velocity increased, groundwater flow systems presented changes from single regional system to a complex local-regional nested system and local-intermediate-regional nested systems, and the groundwater flow had a greater impact on the temperature redistribution.The isotherm in the recharge area moved down under the influence of downward groundwater flow, while the isotherm in the discharge area was lifted up under the influence of upward groundwater flow.And the temperature change in the regional recharge and discharge areas were the most obvious.After heating the sandbox bottom, the water table of the unconfined aquifer decreased and the groundwater velocity increased.Overall penetration depth of streamline became larger, and the scope of stagnant zones decreased.The geothermal energy becomes a nonnegligible driving power in the study of groundwater flow systems in rich geothermal areas.
-
Key words:
- groundwater flow systems /
- numerical simulation /
- sandbox experiment /
- seepage field /
- temperature field
-
表 1 数值模拟方案
Table 1. Cases of numerical simulation
方案 ΔT/℃ 降雨强度ε/(mm·d-1) 模拟的水流模式 A1 0,50 0 无降雨无流动 A2 0,10,30,50 432 区域一级 A3 0,10,30,50 3 888 局部+区域二级 A4 0,10,30,50 6 480 局部+中间+区域 -
[1] Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795 [2] Tóth J. Cross-formational gravity-flow of groundwater: A mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration)[J]. Problem of Petroleum Migration: AAPG Studies in Geology, 1980, 10: 121-167. [3] Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176 [4] 张人权, 梁杏, 靳孟贵, 等. 当代水文地质学发展趋势与对策[J]. 水文地质工程地质, 2005, 32(1): 51-56. doi: 10.3969/j.issn.1000-3665.2005.01.013Zhang R Q, Liang X, Jin M G, et al. The trends in contemporary hydrogeology[J]. Hydrogeology & Engineering Geology, 2005, 32(1): 51-56(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2005.01.013 [5] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.Zhang R Q, Liang X, Jin M G, et al. Foundation of hydrogeology[M]. 7 Edition. Beijing: Geological Publishing House, 2018(in Chinese). [6] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Scienceand Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103 [7] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312 [8] Jiang X W, Wang X S, Wan L, et al. An analytical study on stagnant points in nested flow systems in basins with depth-decaying hydraulic conductivity[J]. Water Resources Research, 2011, 47(1): 128-139. [9] Jiang X W, Wan L, Wang X S, et al. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow[J]. Geophysical Research Letters, 2009, 36(24): L24402. doi: 10.1029/2009GL041251 [10] Wang X S, Jiang X W, Wan L, et al. A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability[J]. Water Resources Research, 2011, 47(9): 3101-3106. [11] 张曼菲, 孙蓉琳, 梁杏. 通量上边界渗透系数随埋深增加指数衰减的地下水流系统[J]. 地质科技情报, 2015, 34(4): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504028.htmZhang M F, Sun R L, Liang X. Effect of decay exponential in hydraulic conductivity with depth on groundwater flow system based on flux upper boundary[J]. Geological Science and Technology Information, 2015, 34(4): 189-193 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504028.htm [12] 梁杏, 牛宏, 张人权, 等. 盆地地下水流模式及其转化与控制因素[J]. 地球科学: 中国地质大学学报, 2012, 37(2): 269-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htmLiang X, Niu H, Zhang R Q, et al. Basinal groundwater flow patterns and their transformation and dominant factors[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(2): 269-275 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm [13] Cardenas M B, Jiang X W. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity[J]. Water Resources Research, 2010, 46(11): 3-23. [14] 刘彦, 梁杏, 权董杰, 等. 改变入渗强度的地下水流模式实验[J]. 地学前缘, 2010, 17(6): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htmLiu Y, Liang X, Dong Q J, et al. Experiments of groundwater flow patterns under changes of infiltration intensity[J]. Earth Science Frontiers, 2010, 17(6): 111-116 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm [15] Liang X, Liu Y, Jin M, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573. doi: 10.1002/hyp.7758 [16] 董维红, 苏小四, 侯光才, 等. 鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J]. 吉林大学学报: 地球科学版, 2007, 37(2): 288-292. doi: 10.3321/j.issn:1671-5489.2007.02.030Dong W H, Su X S, Hou G C, et al. Distribution law of groundwater hydrochemical type in the Ordos Cretaceous Artesian basin[J]. Journal of Jilin University: Earth Science Edition, 2007, 37(2): 288-292(in Chinese with English abstract). doi: 10.3321/j.issn:1671-5489.2007.02.030 [17] 蒋小伟. 盆地含水系统与地下水流动系统特征[D]. 北京: 中国地质大学(北京), 2011.Jiang X W. A study on aquifer systems and groundwater flow systems in drainage basins[D]. Beijing: China University of Geosciences (Beijing), 2007 (in Chinese with English abstract). [18] 曹国亮. 华北平原地下水系统变化规律研究[D]. 北京: 中国地质大学(北京), 2013.Cao G L. Evalution of groundwater system in north China plain using groundwater modeling[D]. Beijing: China University of Geosciences (Beijing), 2007 (in Chinese with English abstract). [19] Garven G, Freeze R A. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 1, Mathematical and numerical model[J]. American Journal of Science, 1984, 284(10): 1085-1124. doi: 10.2475/ajs.284.10.1085 [20] Saar M O. Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields[J]. Hydrogeology Journal, 2011, 19(1): 31-52. doi: 10.1007/s10040-010-0657-2 [21] 赵敬波. 地下热水流动与热量运移的三维非稳定流数值模拟研究[D]. 北京: 中国地质大学(北京), 2015.Zhao J B. 3-Dimensional numerical modeling of unsteady thermal groundwater flow and heat transport[D]. Beijing: China University of Geosciences (Beijing), 2015 (in Chinese with English abstract). [22] 杨伟, 吕亚飞, 张树光. 底部加热多孔介质内传热数值研究[J]. 四川大学学报: 自然科学版, 2014, 2: 340-344. doi: 10.3969/j.issn.0490-6756.2014.02.022Yang W, Lv Y F, Zhang S G. Numerical analysis of heat transmission in porous medium with bottom heating[J]. Journal of Sichuan University: Natural Science Edition, 2014, 2 : 340-344 (in Chinese with English abstract). doi: 10.3969/j.issn.0490-6756.2014.02.022 [23] Vitel M, Rouabhi A, Tijani M, et al. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers and Geotechnics, 2016, 73: 1-15. doi: 10.1016/j.compgeo.2015.11.014 [24] Jiang X W, Wan L, Cardenas M B, et al. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity[J]. Geophysical Research Letters, 2010, 37(5): L05403. [25] 安然. 地下水流与气流、热流的典型耦合问题及解耦条件研究[D]. 北京: 中国地质大学(北京), 2015.An R. Research on typical coupling problems and the decoupling condition for groundwater flow linked with air flow and thermal flow[D]. Beijing: China University of Geosciences (Beijing), 2015 (in Chinese with English abstract). [26] Sorey M L. Numerical modeling of liquid geothermal systems[C]. [S. l.]: Center for integrated data analytics Wisconsin Science Center, 1979. [27] Huyakorn P, Pinder G F. A pressure-enthalpy finite element model for simulating hydrothermal reservoirs[J]. Mathematics and Computers in Simulation, 1978, 20(3): 167-178. doi: 10.1016/0378-4754(78)90066-6 [28] 姜晓. 中国大陆地区的浅层地温分布及其与大地热流关系的初步研究[D]. 北京: 中国科学院研究生院, 2010.Jiang X. A preliminary study on the shallow geothermal distribution and its relationship with the terrestrial heat flow in mainland China[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010 (in Chinese with English abstract). [29] An R, Jiang X W, Wang J Z, et al. A theoretical analysis of basin-scale groundwater temperature distribution[J]. Hydrogeology Journal, 2014, 23(2): 397-404. [30] 牛宏. 地下水流系统控制因素及演变规律研究[D]. 武汉: 中国地质大学(武汉), 2016.Niu H. Study on control factors and evolution law of groundwater flow systems: A case study of Hebei Plain[D]. Wuhan: China University of Geosciences (Wuhan), 2016 (in Chinese with English abstract). [31] 王家乐. 济南岩溶水系统多级次循环模式分析及识别方法研究[D]. 武汉: 中国地质大学(武汉), 2016.Wang J L. Analysis and identification of hierarchical groundwater flow system in Jinan[D]. Wuhan: China University of Geosciences(Wuhan), 2016 (in Chinese with English abstract). [32] 梁杏, 沈仲智, 刘宇, 等. 一种多级次地下水流系统演示仪: CN2008200667265[P]. 2008.Liang X, Shen Z Z, Liu Y, et al. A multi-level sub-groundwater flow system demonstrator: CN2008200667265[P]. 2008(in Chinese).