留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断陷盆地碳酸盐岩热储勘查及研究:以鱼台凹陷为例

孟甲 秦鹏 史启朋 谭现锋 张茜

孟甲, 秦鹏, 史启朋, 谭现锋, 张茜. 断陷盆地碳酸盐岩热储勘查及研究:以鱼台凹陷为例[J]. 地质科技通报, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035
引用本文: 孟甲, 秦鹏, 史启朋, 谭现锋, 张茜. 断陷盆地碳酸盐岩热储勘查及研究:以鱼台凹陷为例[J]. 地质科技通报, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035
Meng Jia, Qin Peng, Shi Qipeng, Tan Xianfeng, Zhang Xi. Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035
Citation: Meng Jia, Qin Peng, Shi Qipeng, Tan Xianfeng, Zhang Xi. Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035

断陷盆地碳酸盐岩热储勘查及研究:以鱼台凹陷为例

doi: 10.19509/j.cnki.dzkq.2022.0035
基金项目: 

中央引导地方科技发展资金项目"碳酸盐岩地热资源成因理论及找矿模式" YDZX20203700002937

山东省地质勘查项目"山东省鱼台凹陷地热资源调查评价" 鲁勘字〔2019〕9号

详细信息
    作者简介:

    孟甲(1990-), 男, 工程师, 主要从事水工环地质方面的研究工作。E-mail: mengzhenchuan@foxmail.com

    通讯作者:

    史启朋(1979-), 男, 正高级工程师, 主要从事水工环地质方面的研究工作。E-mail: shiqipenging@163.com

  • 中图分类号: P314

Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag

  • 摘要:

    鱼台凹陷是一个中生代同沉积断陷盆地, 其内部构造纵横, 深部普遍发育奥陶系碳酸盐岩, 具备地热开发前景。为研究断陷盆地内碳酸盐岩热储特征, 评价其资源潜力, 在鱼台凹陷施工一眼2 309.31 m深钻孔, 通过综合测井、产能测试、水化学分析、气体成分分析、地热水14C年龄测定等手段, 分析了盆地内地热流体的来源及补给、热源储集、离子运移等条件。结果显示, 地热井温曲线的增温异常与裂隙发育断位置一致, 指示了地热水来源方向; 地热水Cl-、Na+含量较高, 其离子组分形成原因与岩盐溶解有关; 鱼台凹陷东南部断裂交会处附近地热水表观年龄43.5 ka BP, 校正年龄10.752 ka BP, 时间在第四纪更新世晚期至全新世早期。研究认为, 鱼台凹陷存在较为活跃或年轻的地质构造, 是热储的热源之一, 区内奥陶系热储可采地热资源量约为2.12×109 GJ, 合标准煤7.27×107 t, 资源潜力较大, 开发利用前景良好。

     

  • 图 1  鱼台凹陷构造图

    Ar.前寒武系变质基底; Pz.古生代海相-海陆交互相沉积岩系; J2-K1.中生代陆相碎屑沉积岩系; E.古近系河湖相沉积岩系; 1.地热钻孔; 2.断裂构造; 3.平行不整合界线;4.角度不整合界线

    Figure 1.  Tectonic geological map of Yutai Sag

    图 2  视电阻率成果推断图

    Figure 2.  Interpretive map of apparent resistivity results

    图 3  YTR1井抽水等效降深(热水头)、流量曲线

    Figure 3.  Equivalent drawdown (hydrothermal head) and flow rate curve of pumping in Well YTR1

    图 4  YTR1井测温曲线

    Figure 4.  Temperature measurement curve of Well YTR1

    图 5  YTR1井及周边地下水Schoeller图

    Figure 5.  Groundwater Schoeller diagram in Well YTR1 and its surroundings

    图 6  YTR1井及周边地下水Gibbs、Piper图

    Figure 6.  Groundwater Gibbs and Piper diagrams in Well YTR1 and its surroundings

    表  1  研究区地层发育及其地热属性

    Table  1.   Stratigraphic characteristics and geothermal properties in the study area

    年代地层单位 厚度/m 岩性特征 地热属性
    新生界 第四系 未分(Q) 60~150 黏土、砂质黏土、黏土质砂及砂砾层 盖层
    新近系 明化镇组(N2m) 260 泥岩为主,夹泥质粉砂岩、细砂岩、砂砾岩,局部含石膏、钙质胶结层
    馆陶组(N1g) 400 上部为页岩,下部以玄武岩为主,局部夹浅灰色泥灰岩及粉砂岩
    古近系 常路组(K2E1$\widehat c$) 310 上部泥质粉砂岩、砂岩;中部位泥质粉砂岩、细砂岩与泥岩互层;下部为泥岩、细砂岩、泥质粉砂岩
    中生界 白垩系 卞桥组(K2E1b) 470 灰岩、黏土岩、岩盐、膏岩
    八亩地组(K1b) >200 上部安山质火山碎屑岩,下部玄武质岩
    杨家庄组(K1y) ≤1 200 下部细粒砂岩夹砾岩透镜体,局部夹泥岩薄层;上部较多粉细砂岩;中部粉砂岩及粉、细砂岩互层
    林寺山组(K1l) 180 中细粒砂岩及砾岩
    古生界 侏罗系 三台(J3K1s) 220 上部粗砂岩,下部砂砾岩
    二叠系 石盒子群(P2-3$\widehat s$) 133 泥岩为主
    山西组(P1-2$\widehat s$) 85 砂岩、泥岩、粉砂岩、煤
    太原组(C2P1t) 200 砂岩、泥岩、粉砂岩、煤
    石炭系 本溪组(C2b) 50 黏土岩
    湖田段(C2bh) 15 铁铝质黏土岩
    奥陶系 八陡组(O2-3b) 灰岩、白云质灰岩 储层
    阁庄组(O2g) 白云岩
    五阳山组(O2w) 云斑灰岩
    土峪组(O2t) 550~900 白云岩
    北庵庄组(O2b) 灰岩、白云质灰岩
    东黄山组(O2d) 白云岩
    注:上表地层岩性参考文献[11]
    下载: 导出CSV

    表  2  YTR1井奥陶系主要出水层测井解释成果

    Table  2.   Logging interpretation result of the mainwater production interval in Ordovician in Well YTR1

    井段/m 层厚/m 电阻率/(Ω·m) 声波时差/(μs·m-1) 孔隙度/% 渗透率/10-3 μm2 泥质φB/% 解释结论
    2 117.8~2 123.8 6.0 215.1 215.8 12.4 125.33 18.4 二类裂缝层
    2 161.5~2 190.4 28.9 85.3 198.8 9 8.54 5.4 三类裂缝层
    下载: 导出CSV

    表  3  YTR1井参数

    Table  3.   Parameters of Well YTR1

    抽水层位 层段深度/m 层位厚度/m 孔隙度/% 含水层厚度/m 出水层段半径/m 静水位埋深/m
    马家沟群上部 2 100.74~2 309.31 208.57 9.58 34.9 0.076 90.372(热水头)
    下载: 导出CSV

    表  4  YTR1井抽水试验结果参数

    Table  4.   Pumping test result parameters of Well YTR1

    落程 降深/m 出水量/(m3·d-1) 井口水温/℃ 含水层厚度/m 渗透系数/(m·d-1) 影响半径/m
    S1 147.63 340.80 62.00 0.091 444.23
    S2 267.63 552.00 68.50 34.90 0.087 789.54
    S3 265.22 456.00 68.00 0.080 646.43
    下载: 导出CSV

    表  5  研究区YTR1井奥陶系水样脱气组分

    Table  5.   Degassing components of Ordovician water samples from Well YTR1 in the study area

    成分 H2 He CH4 CO N2 C2H6 O2 Ar CO2
    φB/% 1.78 0.27 8.53 0.002 69.04 0.1 9.12 0.83 10.32
    下载: 导出CSV
  • [1] 黄旭, 章惠, 汪新伟, 等. 渤海湾盆地南乐地热田特征及其成因分析[J]. 地质科技通报, 2021, 40(5): 71-82. doi: 10.19509/j.cnki.dzkq.2021.0506

    Huang X, Zhang H, Wang X W, et al. Characteristics and mechanism analysis of geothermal field in Nanle Sub-uplift, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 71-82 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0506
    [2] 陈墨香, 汪集旸, 邓孝. 中国地热资源: 形成特点和潜力评价[M]. 北京: 科学出版社, 1994.

    Chen M X, Wang J Y, Deng X. Geothermal resources in China-formation characteristics and potential evaluation[M]. Beijing: Science Press, 1994(in Chinese).
    [3] 康凤新. 山东省地热清洁能源综合评价[M]. 北京: 科学出版社, 2018.

    Kang F X. Comprehensive evaluation of geothermal clean energy in Shandong province[M]. Beijing: Science Press, 2018(in Chinese).
    [4] 孟甲, 赵跃伦, 史启朋, 等. 浅层地热能供暖在农村的应用前景分析[J]. 节能技术, 2021, 39(2): 169-172. doi: 10.3969/j.issn.1002-6339.2021.02.014

    Meng J, Zhao Y L, Shi Q P, et al. Analysis on the application prospect of shallow geothermal energy heating in Rural Areas[J]. Energy Conservation Technology, 2021, 39(2): 169-172(in Chinese with English abstract). doi: 10.3969/j.issn.1002-6339.2021.02.014
    [5] 李钟模. 对鱼台盆地的新认识[J]. 盐湖研究, 1996(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ601.001.htm

    Li Z M. A further research on Yutai Basin in Northern Jiangsu Province[J]. Journal of Salt Lake Research, 1996(1): 13-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ601.001.htm
    [6] 贾元军, 李红阳. 对鲁西南地区鱼台盆地普查找钾的探讨[J]. 河北地质学院学报, 1991, 14(4): 361-368. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX199104005.htm

    Jia Y J, Li H Y. On reconnaissance survey for potassium ore deposits in the Yutai Basin of Southwestern Shandong[J]. Journal of Hebei Institute of Geosciences, 1991, 14(4): 361-368(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX199104005.htm
    [7] 申文环. 山东省鱼台县王鲁盆地盐矿成矿条件及找矿前景分析[J]. 内蒙古石油化工, 2020, 46(4): 35-37. doi: 10.3969/j.issn.1006-7981.2020.04.010

    Shen W H. Analysis of the metallogenic conditions and prospecting prospects for salt ore in Wanglu Basin in Lutai County of Shandong Province[J]. Inner Mongolia Petrochemical Industry, 2020, 46(4): 35-37(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7981.2020.04.010
    [8] 徐军祥, 康凤新. 山东省地热资源[J]. 中国地质, 1999, 26(9): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199909008.htm

    Xu J X, Kang F X. Geothermal resources in Shandong Province[J]. Chinese Geology, 1999, 26(9): 30-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199909008.htm
    [9] 李肖兰, 杜炤伟, 张玲, 等. 山东省地热资源分布与开发利用研究[J]. 山东国土资源, 2021(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm

    Li X L, Du X W, Zhang L, et al. Distribution characteristics and present condition of exploitation and utilization of geothermal resources in Shandong Province[J]. Shandong Land and Resources, 2021(1): 37-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm
    [10] 高宗军, 孙智杰, 杨永红, 等. 山东省地热水水化学研究及赋存特征[J]. 科学技术与工程, 2019, 19(20): 85-90. doi: 10.3969/j.issn.1671-1815.2019.20.012

    Gao Z J, Sun Z J, Yang Y H, et al. Occurrence characteristics and hydrochemical characteristics of geothermal water in Shandong Province[J]. Science Technology and Engineering, 2019, 19(20): 85-90(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2019.20.012
    [11] 刘述敏, 宋洪涛, 梁栋彬, 等. 山东省鱼台县矿产资源综合调查报告[R]. 山东兖州: 山东省第二地质矿产勘查院, 1999.

    Liu S M, Song H T, Liang D B, et al. Comprehensive investigation report of Mineral Resources in Yutai County, Shandong Province[R]. Yanzhou Shandong: Shandong Second Geology and Mineral Resources Exploration Institute, 1999(in Chinese with English abstract).
    [12] 中华人民共和国国家质量监督检验检疫总局. 地热资源地质勘查规范: GB/T 11615-2010[S]. 北京: 中国标准出版社, 2010: 11-12.

    State General Administration of the People's Republic of China for Quality Supervision and Inspection andQuarantine. Geologic exploration standard of geothermal resources: GB/T 11615-2010[S]. Beijing: Standards Press of China, 2010: 11-12(in Chinese).
    [13] 吴爱民, 马峰, 王贵玲, 等. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 2018, 39(5): 523-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805002.htm

    Wu A M, Ma F, Wang G L, et al. A study of deep-seated karst geothermal reservoir exploration and Huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientica Sinica, 2018(5): 523-532(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805002.htm
    [14] 王贵玲, 高俊, 张保建, 等. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 2020, 94(7): 1970-1980. doi: 10.3969/j.issn.0001-5717.2020.07.006

    Wang G L, Gao J, Zhang B J, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong'an New Area[J]. Acta Geologica Sinica, 2020, 94(7): 1970-1980(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.006
    [15] Dow Chemical Co., Ltd. FILMTEC reverse Osmosis and Nanofiltration membrane components products and Technical Manual[M]. USA: Dow Chemical Company, 2019: 233.
    [16] 史启朋, 宋帅良, 孟甲, 等. 山东省菏泽凸起地热田岩溶地热水水化学水平演化特征[J]. 中国岩溶, 2021, 40(2): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102016.htm

    Shi Q P, Song S L, Meng J, et al. Hydrochemical evolution of karst geothermal water in the Heze uplift geothermal field, Shandong Province[J]. Carsologica Sinica, 2021, 40(2): 310-318(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102016.htm
    [17] Kortatsi B K. Hydrochemical framework of groundwater in the Ankobra Basin, Ghana[J]. Aquatic Geochemistry, 2007, 13(1): 41-74. doi: 10.1007/s10498-006-9006-4
    [18] 齐丽丽. 山东省第三纪盐类矿产沉积主控因素的研究[D]. 山东青岛: 山东科技大学, 2010.

    Qi L L. Study on main factors of Tertiary salt mineral sediment in Shandong Province[D]. Qingdao Shandong: Shandong University of Science and Technology, 2010(in Chinese with English abstract).
    [19] Huh Y, Tsoi M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of eastern Siberia: Ⅰ. Tributaries of the Lena river draining the sedimentary platform of the Siberian Craton[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1657-1676. doi: 10.1016/S0016-7037(98)00107-0
    [20] Edmunds W M, Ma J, Aeschbach-Hertig W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China[J]. Applied geochemistry, 2006, 21(12): 2148-2170. doi: 10.1016/j.apgeochem.2006.07.016
    [21] 何建华. 疏勒河流域地下水14C年龄校正[D]. 兰州: 兰州大学, 2013.

    He J H. The 14C age correction of the groundwater in the Shule River Basin[D]. Lanzhou: Lanzhou University, 2013(in Chinese with English abstract).
    [22] 陈宗宇, 齐继祥, 张兆吉, 等. 北方典型盆地同位素水文地质学方法应用[M]. 北京: 科学出版社, 2010.

    Chen Z Y, Qi J X, Zhang Z J, et al. Application of isotope hydrogeological methods in typical basins in North China[M]. Beijing: Science Press, 2010(in Chinese).
    [23] Ingerson E, Pearson F J. Estimation of age and rate of motion of groundwater by the 14C-method[J]. Recent Researches in the Fields of Atmosphere, Hydrosphere and Nuclear Geochemistry, 1964: 263-283.
    [24] 王先彬, 陈践发, 徐胜, 等. 地震区温泉气体的地球化学特征[J]. 中国科学: B辑, 化学, 生命科学, 地学, 1992, 22(8): 849-854. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199208009.htm

    Wang X B, Chen J F, Xu S, et al. Geochemical characteristics of hot spring gas in seismic area[J]. Science in China: Series B, Chemistry, Life Sciences and Geosciences, 1992, 22(8): 849-854(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199208009.htm
    [25] 侯定远. 地下热水气体成份及其地球化学意义[J]. 水文地质工程地质, 1987, 14(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198701011.htm

    Hou D Y. Gas composition of geothermal water and its geochemical significance[J]. Hydrogeology & Engineering Geology, 1987, 14(1): 37-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198701011.htm
    [26] 冯明扬, 宋汉周, 杨谦, 等. 江苏部分地热水的气体成分和微量元素含量特征及其指示意义[J]. 水文地质工程地质, 2016, 43(1): 164-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601026.htm

    Feng M Y, Song H Z, Yang Q, et al. Characteristics of dissovled gases and trace element in geothermal waters in Jiangsu and their tracing significance[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 164-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601026.htm
    [27] 朱喜, 张庆莲, 刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报, 2016, 35(4): 172-177. doi: 10.3969/j.issn.1009-6248.2016.04.008

    Zhu X, Zhang Q L, Liu Y G. Evaluation of the geothermal resources in the plain of west Shandong Province[J]. Geological Science and Technology Information, 2016, 35(4): 172-177(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2016.04.008
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  3
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回