Crack propagation law and mechanical mechanism of Jurassic soft rock in the Three Gorges Reservoir area under water pressure
-
摘要:
三峡库区侏罗系地层滑坡发育广泛,研究该地层软岩夹层在不同水压力作用下的强度及变形破坏特性对库区岸坡的长期稳定性评价具有重要理论指导意义。以三峡库区侏罗系典型软岩——沙溪庙组泥质粉砂岩为例,对其进行了不同水压力下的力学试验系统(MTS)三轴压缩试验,并基于断裂力学与有效应力原理对水-力耦合效应下岩石的起裂及裂纹扩展机制进行了分析。研究结果表明:水压力的存在可降低岩石的峰值抗压强度,水压力越大岩石破坏后控制性裂纹的长度及倾角也总体随之增大,次生裂纹的数目也呈现出随之增多的趋势;原生裂纹的起裂及次生裂纹的扩展分别受控于
K Ⅱ、K Ⅰ型应力强度因子,原生裂纹的起裂角最大为70.5°;次生裂纹的临界扩展长度随原生裂纹长度的增加而增大,当原生裂纹倾角约为45°时,在相同条件下次生裂纹的扩展长度最大;说明水压力的存在加剧了岩石裂纹的扩展,且使岩石的张拉破坏趋势更为明显,而原生裂纹形态特征对裂纹的扩展规律亦具有较大的影响。Abstract:Jurassic landslides are widely developed in the Three Gorges Reservoir area. The study of the strength and deformation failure characteristics of the soft rock interlayer under different water pressures is of great theoretical significance to the long-term stability evaluation of the reservoir bank slope. MTS triaxial compression tests were carried out on the argillaceous siltstone of Shaximiao Formation, a typical soft rock of Jurassic in the Three Gorges Reservoir area, to study the strength and deformation damage characteristics of the rock under different water pressures. Based on fracture mechanics and effective stress principle, the mechanism of crack initiation and crack propagation under hydro-mechanical coupling effect was analyzed. It was found that water pressure can reduce the peak compressive strength of rock. With the increase of water pressure, the length and dip angle of dominant cracks increase, and the number of secondary cracks also shows a trend of increasing. The primary crack initiation and secondary crack propagation were controlled by
K Ⅱ andK Ⅰ stress intensity factors, respectively. The maximum initiation angle of the primary crack was 70.5°. The critical propagation length of the secondary crack increases with the increase of the primary crack length. When the dip angle of the primary crack is about 45°, the propagation length of the secondary crack reaches the maximum under the same conditions. The results show that the existence of water pressure is conducive to the crack propagation, and the geometric characteristics of primary cracks also have a great influence on the crack propagation law.This study provides some theoretical guidance for the long-term stability evaluation of the reservoir bank rock mass. -
图 7 三轴压缩及水压力作用下岩样受力简化示意图
θ.次生纹与原生微裂纹之间的夹角;T.剪应力在原生裂纹端点产生的集中应力;Tsinα.垂直于次生裂纹的应力分量;l.次生裂纹的长度;其他物理量的含义同图 5
Figure 7. Schematic diagram of the stress of the rock sample under triaxial compression and water pressure
表 1 不同水压力作用下侏罗系软岩的破坏特征统计
Table 1. Damage characteristic statistics of Jurassic soft rocks under different water pressures
围压/MPa 水压力/ MPa 最大剪切裂纹长度/cm 宏观破坏面与水平面夹角/(°) 2 0 7.6 55 0.1 8.5 70 0.3 10.5 67 0.5 10.8 69 0.8 9.4 74 1.0 11.5 76 -
[1] 简文星, 殷坤龙, 马昌前, 等. 万州侏罗纪红层软弱夹层特征[J]. 岩土力学, 2005, 26(6): 901-905, 914. doi: 10.3969/j.issn.1000-7598.2005.06.015Jian W X, Yin K L, Ma C Q, et al. Characteristics of incompetent beds in Jurassic red clastic rocks in Wanzhou[J]. Rock and Soil Mechanics, 2005, 26(6): 901-905, 914(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.06.015 [2] 朱赛楠, 李滨, 冯振. 三峡库区侏罗系泥岩CT损伤特性试验研究[J]. 水文地质工程地质, 2016, 43(1): 72-78, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601012.htmZhu S N, Li B, Feng Z. Research on CT damage characteristics of the Jurassic mudstones in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 72-78, 104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601012.htm [3] 邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htmDeng H F, Zhi Y Y, Duan L L, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm [4] 曹洋兵, 陈玉华, 张朋, 等. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308Cao Y B, Chen Y H, Zhang P, et al. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0308 [5] 张磊, 刘镇, 周翠英. 红层软岩浸水裂纹扩展试验与破裂机制分析[J]. 中山大学学报: 自然科学版, 2012, 51(6): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htmZhang L, Liu Z, Zhou C Y. Experiment of crack propagation of red-bed soft rock in water and micromechanical mechanism of crack propagation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 35-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htm [6] 孙刚. 基于显微CT扫描的膨胀岩土体的裂隙结构与分形特征研究[J]. 化工矿物与加工, 2018, 47(9): 48-51, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201809012.htmSun G. Study on crack structure and fractal characteristics of expansive rock and soil body based on microscopic CT scan[J]. Industrial Minerals & Processing, 2018, 47(9): 48-51, 55 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201809012.htm [7] 周峙, 张家铭, 刘宇航, 等. 巴东组紫红色泥质粉砂岩损伤特性三轴试验研究[J]. 水文地质工程地质, 2012, 39(2): 56-60, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202014.htmZhou Z, Zhang J M, Liu Y H, et al. A triaxial testing study of the damage characteristics of purple argillaceous siltstone of the Badong Formation[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 56-60, 73(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202014.htm [8] 刘涛影, 曹平, 章立峰, 等. 高渗压条件下压剪岩石裂纹断裂损伤演化机制研究[J]. 岩土力学, 2012, 33(6): 1801-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206030.htmLiu T Y, Cao P, Zhang L F, et al. Study of fracture damage evolution mechanism of compression-shear rock cracks under high seepage pressure[J]. Rock and Soil Mechanics, 2012, 33(6): 1801-1808(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206030.htm [9] Liu H, Li L, Zhao S, et al. Complete stress-strain constitutive model considering crack model of brittle rock[J]. Environmental Earth Sciences, 2019, 78(21): 1-18. doi: 10.1007/s12665-019-8643-z [10] 许江, 田傲雪, 程立朝, 等. 砂岩双面剪切细观损伤特性试验研究[J]. 岩石力学与工程学报, 2015, 34(2): 3642-3651. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2004.htmXu J, Tian A X, Cheng L C, et al. Experimental research on meso-damage characteristic of double sheared sandstone[J]. Chinese Joumnal of Rock Mechanics and Engineering, 2015, 34(2): 3642-3651(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2004.htm [11] Li Z, Xiong Z, Chen H, et al. Analysis of stress-strain relationship of brittle rock containing microcracks under water pressure[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 1909-1918. doi: 10.1007/s10064-019-01660-6?utm_source=xmol [12] Zhao Y, Tang L, Liu Q, et al. The micro damage model of the cracked rock considering seepage pressure[J]. Geotechnical and Geological Engineering, 2019, 37(2): 965-974. doi: 10.1007%2Fs10706-018-0663-z.pdf [13] Li Y, Zhou H, Zhu W, et al. Numerical investigations on slope stability using an elasto-brittle model considering fissure water pressure[J]. Arabian Journal of Geosciences, 2015, 8(12): 10277-10288. http://www.onacademic.com/detail/journal_1000037829576810_4d7d.html [14] Hao R, Li J, Cao P, et al. Test of subcritical crack growth and fracture toughness under water-rock interaction in three types of rocks[J]. Journal of Central South University, 2015, 22(2): 662-668. http://www.ingentaconnect.com/content/ssam/20952899/2015/00000022/00000002/art00033 [15] Zhao Y, Wang Y, Wang W, et al. Modeling of rheological fracture behavior of rock cracks subjected to hydraulic pressure and far field stresses[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 59-66. http://www.onacademic.com/detail/journal_1000041594955799_b1cd.html [16] 中华人民共和国水利部. 工程岩体分级标准: GB/T 50218-2014[S]. 北京: 中国计划出版社, 2013.Ministry of Water Resources, PRC. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press, 2013(in Chinese). [17] 潘永亮, 简文星, 杨光辉, 等. 水压力作用下三峡库区侏罗系软岩损伤演化特性研究[J]. 工程地质学报, 2021, 29(3): 693-701. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103012.htmPan Y L, Jian W X, Yang G H, et al. Damage and evolution characteristics of Jurassic soft rock in Three Gorges Reservoir area under water pressure[J]. Journal of Engineering Geology, 2021, 29(3): 693-701(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103012.htm [18] 许江, 杨红伟, 彭守建, 等. 孔隙水压力-围压作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(8): 1618-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008016.htmXu J, Yang H W, Peng S J, et al. Experimental study of mechanical property of sandstone under pore water pressure and confining pressure[J]. Chinese Joumnal of Rock Mechanics and Engineering, 2010, 29(8): 1618-1623(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008016.htm [19] Anderson T L. Fracture mechanics: Fundamentals and applications[M]. Boca Raton: CRC Press, 2017. [20] 唐辉明, 晏同珍. 岩体断裂力学理论与工程应用[M]. 武汉: 中国地质大学出版社, 1993.Tang H M, Yang T Z. Rock mass fracture mechanics theory and engineering application[M]. Wuhan: China University of Geosciences Press, 1993(in Chinese). [21] 聂韬译, 浦海, 刘桂宏, 等. 渗流-应力耦合下的裂隙岩体劈裂模型研究[J]. 采矿与安全工程学报, 2015, 32(6): 1026-1030, 1036. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506026.htmNie T Y, Pu H, Liu G H, et al. Research on splitting failure model of fractured rock mass under the coupling effect of seepage-stress[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 1026-1030, 1036 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506026.htm [22] 赵延林, 彭青阳, 万文, 等. 高水压下岩体裂纹扩展的渗流-断裂耦合机制与数值实现[J]. 岩土力学, 2014, 35(2): 556-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402037.htmZhao Y L, Peng Q Y, Wan W, et al. Seepage-fracture coupling mechanism of rock masses cracking propagation under high hydraulic pressure and numerical verification[J]. Rock and Soil Mechanics, 2014, 35(2): 556-564 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402037.htm [23] 赵延林, 王卫军, 赵伏军, 等. 渗透压-应力作用下岩体翼形裂纹模型与数值验证[J]. 采矿与安全工程学报, 2010, 27(3): 370-376. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201003020.htmZhao Y L, Wang W J, Zhao F J, et al. Rock wing cracks model under the action of hydraulic pressure-stress and numerical verification[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 370-376 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201003020.htm [24] 李江腾, 古德生, 曹平, 等. 岩石断裂韧度与抗压强度的相关规律[J]. 中南大学学报: 自然科学版, 2009, 40(6): 1695-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200906040.htmLi J T, Gu D S, Cao P, et al. Interrelated law between mode-Ⅰ fracture toughness and compression strength of rock[J]. Journal of Central South University: Science and Technology, 2009, 40(6): 1695-1699(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200906040.htm [25] 邓华锋, 朱敏, 李建林, 等. 砂岩Ⅰ型断裂韧度及其与强度参数的相关性研究[J]. 岩土力学, 2012, 33(12): 3585-3591. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212011.htmDeng H F, Zhu M, Li J L, et al. Study of mode-Ⅰ fracture toughness and its correlation with strength parameters of sandstone[J]. Rock and Soil Mechanics, 2012, 33(12): 3585-3591(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212011.htm [26] 包含, 伍法权, 郗鹏程. 岩石Ⅰ型断裂韧度估算及其影响因素分析[J]. 煤炭学报, 2017, 42(3): 604-612. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703008.htmBao H, Wu F Q, Xi P C. Estimation of mode Ⅰ fracture toughness of rock and its impact factors analysis[J]. Journal of China Coal Society, 2017, 42(3): 604-612(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703008.htm