留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水压力作用下三峡库区侏罗系软岩裂纹扩展规律及力学机制

简文星 潘永亮 李林均 李豪 徐长江

简文星, 潘永亮, 李林均, 李豪, 徐长江. 水压力作用下三峡库区侏罗系软岩裂纹扩展规律及力学机制[J]. 地质科技通报, 2023, 42(3): 1-8. doi: 10.19509/j.cnki.dzkq.2022.0036
引用本文: 简文星, 潘永亮, 李林均, 李豪, 徐长江. 水压力作用下三峡库区侏罗系软岩裂纹扩展规律及力学机制[J]. 地质科技通报, 2023, 42(3): 1-8. doi: 10.19509/j.cnki.dzkq.2022.0036
Jian Wenxing, Pan Yongliang, Li Linjun, Li Hao, Xu Changjiang. Crack propagation law and mechanical mechanism of Jurassic soft rock in the Three Gorges Reservoir area under water pressure[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 1-8. doi: 10.19509/j.cnki.dzkq.2022.0036
Citation: Jian Wenxing, Pan Yongliang, Li Linjun, Li Hao, Xu Changjiang. Crack propagation law and mechanical mechanism of Jurassic soft rock in the Three Gorges Reservoir area under water pressure[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 1-8. doi: 10.19509/j.cnki.dzkq.2022.0036

水压力作用下三峡库区侏罗系软岩裂纹扩展规律及力学机制

doi: 10.19509/j.cnki.dzkq.2022.0036
基金项目: 

国家自然科学基金项目“三峡库区典型顺向岸坡库水与降雨联合作用失稳观测与理论解析” 41272306

详细信息
    作者简介:

    简文星(1967—),男,教授,主要从事工程地质与岩土工程方面的科研与教学工作。E-mail: wxjian@cug.edu.cn

    通讯作者:

    潘永亮(1995—),男,助理工程师,主要从事岩土工程与地质灾害方面的勘察设计研究工作。E-mail:934732201@qq.com

  • 中图分类号: TU41

Crack propagation law and mechanical mechanism of Jurassic soft rock in the Three Gorges Reservoir area under water pressure

  • 摘要:

    三峡库区侏罗系地层滑坡发育广泛,研究该地层软岩夹层在不同水压力作用下的强度及变形破坏特性对库区岸坡的长期稳定性评价具有重要理论指导意义。以三峡库区侏罗系典型软岩——沙溪庙组泥质粉砂岩为例,对其进行了不同水压力下的力学试验系统(MTS)三轴压缩试验,并基于断裂力学与有效应力原理对水-力耦合效应下岩石的起裂及裂纹扩展机制进行了分析。研究结果表明:水压力的存在可降低岩石的峰值抗压强度,水压力越大岩石破坏后控制性裂纹的长度及倾角也总体随之增大,次生裂纹的数目也呈现出随之增多的趋势;原生裂纹的起裂及次生裂纹的扩展分别受控于KK型应力强度因子,原生裂纹的起裂角最大为70.5°;次生裂纹的临界扩展长度随原生裂纹长度的增加而增大,当原生裂纹倾角约为45°时,在相同条件下次生裂纹的扩展长度最大;说明水压力的存在加剧了岩石裂纹的扩展,且使岩石的张拉破坏趋势更为明显,而原生裂纹形态特征对裂纹的扩展规律亦具有较大的影响。

     

  • 图 1  试验所用标准岩样

    Figure 1.  Standard rock samples used for testing

    图 2  侏罗系软岩单轴压缩试验曲线

    Figure 2.  Uniaxial compression test curve of Jurassic soft rock

    图 3  不同水压力作用下侏罗系软岩应力-应变曲线

    Figure 3.  Stress and strain curve of Jurassic soft rocks under different water pressures

    图 4  不同水压力作用下侏罗系软岩的破坏形态与裂纹发育特征

    Figure 4.  Destruction morphology and crack development characteristics of Jurassic soft rocks under different water pressures

    图 5  侏罗系泥质粉砂岩受力分析过程简化示意

    σ1.轴向压力;σ3.围岩;pw.水压力;α.裂纹与竖直方向的夹角;2a.裂缝长度;σn.正应力;τn.剪应力;下同

    Figure 5.  Simplified diagram of the stress analysis process of Jurassic argillaceous siltstone

    图 6  原生微裂纹受力起裂产生次生翼型裂纹

    Figure 6.  Primary microcracks cracked by stress to produce secondary airfoil cracks

    图 7  三轴压缩及水压力作用下岩样受力简化示意图

    θ.次生纹与原生微裂纹之间的夹角;T.剪应力在原生裂纹端点产生的集中应力;Tsinα.垂直于次生裂纹的应力分量;l.次生裂纹的长度;其他物理量的含义同图 5

    Figure 7.  Schematic diagram of the stress of the rock sample under triaxial compression and water pressure

    图 8  岩样三轴压缩试验裂纹贯通破坏过程

    Figure 8.  Crack through failure process of rock samples under triaxial compression

    图 9  水压力及原生微裂纹形态特征对次生裂纹扩展的影响

    Figure 9.  Effects of water pressure and primary microcrack geometry on secondary crack propagation

    表  1  不同水压力作用下侏罗系软岩的破坏特征统计

    Table  1.   Damage characteristic statistics of Jurassic soft rocks under different water pressures

    围压/MPa 水压力/ MPa 最大剪切裂纹长度/cm 宏观破坏面与水平面夹角/(°)
    2 0 7.6 55
    0.1 8.5 70
    0.3 10.5 67
    0.5 10.8 69
    0.8 9.4 74
    1.0 11.5 76
    下载: 导出CSV
  • [1] 简文星, 殷坤龙, 马昌前, 等. 万州侏罗纪红层软弱夹层特征[J]. 岩土力学, 2005, 26(6): 901-905, 914. doi: 10.3969/j.issn.1000-7598.2005.06.015

    Jian W X, Yin K L, Ma C Q, et al. Characteristics of incompetent beds in Jurassic red clastic rocks in Wanzhou[J]. Rock and Soil Mechanics, 2005, 26(6): 901-905, 914(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.06.015
    [2] 朱赛楠, 李滨, 冯振. 三峡库区侏罗系泥岩CT损伤特性试验研究[J]. 水文地质工程地质, 2016, 43(1): 72-78, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601012.htm

    Zhu S N, Li B, Feng Z. Research on CT damage characteristics of the Jurassic mudstones in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 72-78, 104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601012.htm
    [3] 邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm

    Deng H F, Zhi Y Y, Duan L L, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm
    [4] 曹洋兵, 陈玉华, 张朋, 等. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308

    Cao Y B, Chen Y H, Zhang P, et al. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0308
    [5] 张磊, 刘镇, 周翠英. 红层软岩浸水裂纹扩展试验与破裂机制分析[J]. 中山大学学报: 自然科学版, 2012, 51(6): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htm

    Zhang L, Liu Z, Zhou C Y. Experiment of crack propagation of red-bed soft rock in water and micromechanical mechanism of crack propagation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 35-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htm
    [6] 孙刚. 基于显微CT扫描的膨胀岩土体的裂隙结构与分形特征研究[J]. 化工矿物与加工, 2018, 47(9): 48-51, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201809012.htm

    Sun G. Study on crack structure and fractal characteristics of expansive rock and soil body based on microscopic CT scan[J]. Industrial Minerals & Processing, 2018, 47(9): 48-51, 55 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201809012.htm
    [7] 周峙, 张家铭, 刘宇航, 等. 巴东组紫红色泥质粉砂岩损伤特性三轴试验研究[J]. 水文地质工程地质, 2012, 39(2): 56-60, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202014.htm

    Zhou Z, Zhang J M, Liu Y H, et al. A triaxial testing study of the damage characteristics of purple argillaceous siltstone of the Badong Formation[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 56-60, 73(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202014.htm
    [8] 刘涛影, 曹平, 章立峰, 等. 高渗压条件下压剪岩石裂纹断裂损伤演化机制研究[J]. 岩土力学, 2012, 33(6): 1801-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206030.htm

    Liu T Y, Cao P, Zhang L F, et al. Study of fracture damage evolution mechanism of compression-shear rock cracks under high seepage pressure[J]. Rock and Soil Mechanics, 2012, 33(6): 1801-1808(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206030.htm
    [9] Liu H, Li L, Zhao S, et al. Complete stress-strain constitutive model considering crack model of brittle rock[J]. Environmental Earth Sciences, 2019, 78(21): 1-18. doi: 10.1007/s12665-019-8643-z
    [10] 许江, 田傲雪, 程立朝, 等. 砂岩双面剪切细观损伤特性试验研究[J]. 岩石力学与工程学报, 2015, 34(2): 3642-3651. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2004.htm

    Xu J, Tian A X, Cheng L C, et al. Experimental research on meso-damage characteristic of double sheared sandstone[J]. Chinese Joumnal of Rock Mechanics and Engineering, 2015, 34(2): 3642-3651(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2004.htm
    [11] Li Z, Xiong Z, Chen H, et al. Analysis of stress-strain relationship of brittle rock containing microcracks under water pressure[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 1909-1918. doi: 10.1007/s10064-019-01660-6?utm_source=xmol
    [12] Zhao Y, Tang L, Liu Q, et al. The micro damage model of the cracked rock considering seepage pressure[J]. Geotechnical and Geological Engineering, 2019, 37(2): 965-974. doi: 10.1007%2Fs10706-018-0663-z.pdf
    [13] Li Y, Zhou H, Zhu W, et al. Numerical investigations on slope stability using an elasto-brittle model considering fissure water pressure[J]. Arabian Journal of Geosciences, 2015, 8(12): 10277-10288. http://www.onacademic.com/detail/journal_1000037829576810_4d7d.html
    [14] Hao R, Li J, Cao P, et al. Test of subcritical crack growth and fracture toughness under water-rock interaction in three types of rocks[J]. Journal of Central South University, 2015, 22(2): 662-668. http://www.ingentaconnect.com/content/ssam/20952899/2015/00000022/00000002/art00033
    [15] Zhao Y, Wang Y, Wang W, et al. Modeling of rheological fracture behavior of rock cracks subjected to hydraulic pressure and far field stresses[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 59-66. http://www.onacademic.com/detail/journal_1000041594955799_b1cd.html
    [16] 中华人民共和国水利部. 工程岩体分级标准: GB/T 50218-2014[S]. 北京: 中国计划出版社, 2013.

    Ministry of Water Resources, PRC. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press, 2013(in Chinese).
    [17] 潘永亮, 简文星, 杨光辉, 等. 水压力作用下三峡库区侏罗系软岩损伤演化特性研究[J]. 工程地质学报, 2021, 29(3): 693-701. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103012.htm

    Pan Y L, Jian W X, Yang G H, et al. Damage and evolution characteristics of Jurassic soft rock in Three Gorges Reservoir area under water pressure[J]. Journal of Engineering Geology, 2021, 29(3): 693-701(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103012.htm
    [18] 许江, 杨红伟, 彭守建, 等. 孔隙水压力-围压作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(8): 1618-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008016.htm

    Xu J, Yang H W, Peng S J, et al. Experimental study of mechanical property of sandstone under pore water pressure and confining pressure[J]. Chinese Joumnal of Rock Mechanics and Engineering, 2010, 29(8): 1618-1623(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008016.htm
    [19] Anderson T L. Fracture mechanics: Fundamentals and applications[M]. Boca Raton: CRC Press, 2017.
    [20] 唐辉明, 晏同珍. 岩体断裂力学理论与工程应用[M]. 武汉: 中国地质大学出版社, 1993.

    Tang H M, Yang T Z. Rock mass fracture mechanics theory and engineering application[M]. Wuhan: China University of Geosciences Press, 1993(in Chinese).
    [21] 聂韬译, 浦海, 刘桂宏, 等. 渗流-应力耦合下的裂隙岩体劈裂模型研究[J]. 采矿与安全工程学报, 2015, 32(6): 1026-1030, 1036. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506026.htm

    Nie T Y, Pu H, Liu G H, et al. Research on splitting failure model of fractured rock mass under the coupling effect of seepage-stress[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 1026-1030, 1036 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506026.htm
    [22] 赵延林, 彭青阳, 万文, 等. 高水压下岩体裂纹扩展的渗流-断裂耦合机制与数值实现[J]. 岩土力学, 2014, 35(2): 556-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402037.htm

    Zhao Y L, Peng Q Y, Wan W, et al. Seepage-fracture coupling mechanism of rock masses cracking propagation under high hydraulic pressure and numerical verification[J]. Rock and Soil Mechanics, 2014, 35(2): 556-564 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402037.htm
    [23] 赵延林, 王卫军, 赵伏军, 等. 渗透压-应力作用下岩体翼形裂纹模型与数值验证[J]. 采矿与安全工程学报, 2010, 27(3): 370-376. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201003020.htm

    Zhao Y L, Wang W J, Zhao F J, et al. Rock wing cracks model under the action of hydraulic pressure-stress and numerical verification[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 370-376 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201003020.htm
    [24] 李江腾, 古德生, 曹平, 等. 岩石断裂韧度与抗压强度的相关规律[J]. 中南大学学报: 自然科学版, 2009, 40(6): 1695-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200906040.htm

    Li J T, Gu D S, Cao P, et al. Interrelated law between mode-Ⅰ fracture toughness and compression strength of rock[J]. Journal of Central South University: Science and Technology, 2009, 40(6): 1695-1699(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200906040.htm
    [25] 邓华锋, 朱敏, 李建林, 等. 砂岩Ⅰ型断裂韧度及其与强度参数的相关性研究[J]. 岩土力学, 2012, 33(12): 3585-3591. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212011.htm

    Deng H F, Zhu M, Li J L, et al. Study of mode-Ⅰ fracture toughness and its correlation with strength parameters of sandstone[J]. Rock and Soil Mechanics, 2012, 33(12): 3585-3591(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212011.htm
    [26] 包含, 伍法权, 郗鹏程. 岩石Ⅰ型断裂韧度估算及其影响因素分析[J]. 煤炭学报, 2017, 42(3): 604-612. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703008.htm

    Bao H, Wu F Q, Xi P C. Estimation of mode Ⅰ fracture toughness of rock and its impact factors analysis[J]. Journal of China Coal Society, 2017, 42(3): 604-612(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703008.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1385
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21

目录

    /

    返回文章
    返回