Genesis and occurrence models of hot-dry geothermal resources in Guangxi
-
摘要:
干热岩(HDR)作为一种清洁、可再生的地热资源,所蕴含的地热能潜力巨大,极具开发前景和研究价值。为了向干热型地热资源生成理论研究及赋存条件分析提供案例,向干热岩成因机制、赋存模式的系统性总结贡献广西经验,选取地热资源丰富的钦州、合浦盆地为研究对象,采用区域地质调查、热物性测定、放射性元素测量、地热地球化学和地球物理勘查等综合性研究方法,对两个干热型地热资源潜力区的热源机制、运移和聚热模式进行了系统总结,即在有限的地质、地热井、热物性和大地电磁测深(MT)资料的约束下,初步建立密度、磁性、电性参数与基础地质认识有机统一的地质—地球物理模型和干热型地热资源赋存模型。结果表明:在地球内热的生成、演化理论制约下,钦州盆地以壳、幔物质上涌所形成的传导型热为主要热源,归属于强烈构造活动带—沉积盆地型干热型地热资源区;合浦盆地以“低速高导”局部熔融层为主要热源,以次级幔枝或热点为热源补给,归属于近代火山—沉积盆地型干热型地热资源区。研究结果为干热型地热资源的勘查提供了理论依据,对广西干热型地热资源潜力区的对比性研究和精细化评价具有示范性意义。
Abstract:As a kind of clean and renewable geothermal resource, dry hot rock (HDR) contains a huge potential for geothermal energy, which is of great development prospect and research value. To provide cases for the theoretical study on the generation and the analysis of occurrence conditions of dry-hot geothermal resources, and contribute the experience of Guangxi to the systematic summary of the genesis and occurrence models of HDR, this article selects Qinzhou and Hepu basins, which contain rich geothermal resources, as the research objects, using regional geological survey, thermophysical determination, radioactive element measurement, geothermal geochemistry, geophysical exploration and other comprehensive research methods, systematically summary the heat source mechanism, migration and heat accumulation model of two potential dry heat geothermal resource regions. Under the constraint of limited geological, geothermal well, thermophysical property, and magnetotelluric sounding(MT)data, establish an organic and unified geology-geophysics model of density, magnetism, electrical property parameters, and basic geological knowledge, an occurrence model of dry hot geothermal resources. The results suggest that under the restriction of the generation and evolution of the earth′s internal heat, Qinzhou Basin is classified as an active tectonic belt - sedimentary basin type of HDR resources area, which regards crust-mantle upwelling material as the main heat source; Hepu Basin is classified as the modern volcano-sedimentary basin type of HDR resources area, which regards local molten layer as the main heat source with the "low speed and high resistance" and secondary mantle branch / hot spot as the supply heat source. The research results provide a theoretical basis for the exploration of dry-hot geothermal resources and have demonstrative significance for the comparative study and fine evaluation of dry-hot geothermal resource potential areas in Guangxi.
-
Key words:
- Guangxi /
- hot-dry geothermal resources /
- genesis /
- occurrence models
-
图 6 研究区电性结构及布格重力异常图(A-B剖面位置见图 1)
Figure 6. Map of the electrical structure and Bouguer anomaly in the study area
图 7 研究区30 km以浅区域精细化电性结构图(A-B剖面位置见图 1)
Figure 7. Elaborate electrical structure within 30 km in the study area
表 1 研究区典型地质体的放射性元素含量和放射性生热率统计
Table 1. Statistical table of radioactive element contents and RHGR of the typical geological bodies from the study area
时代 岩性 样品编号 块体密度ρ/(g·cm-3) Th U w(K2O)/% A/(μW·m-3) ATh AU AK wB/(μg·g-1) 热贡献率/% 第四纪 烟墩玄武岩 WZD-01 2.59 6.76 1.26 1.75 0.92 49 34 17 涠洲岛玄武岩 WZD-03 2.83 7.18 1.56 1.41 1.08 48 39 13 三叠纪 六万大山堇青花岗岩 HP-45-01 2.70 17.5 5.46 2.72 2.87 42 49 9 HP-45-03 2.70 16.4 5.27 4.01 2.86 40 47 13 HP-45-04 2.69 18.3 5.67 3.86 3.07 41 47 12 那丽堇青花岗岩 QZ-22-02 2.76 18.5 4.15 4.29 2.81 47 39 15 QZ-22-03 2.71 18.4 3.65 4.32 2.62 49 36 16 QZ-22-05 2.76 18.9 3.27 3.96 2.57 52 33 15 旧州紫苏花岗岩 QZ-44-05 2.75 24.7 3.06 4.07 2.92 59 27 13 QZ-44-06 2.72 27.0 2.92 3.92 3.00 63 25 12 QZ-44-07 2.76 26.5 3.20 3.70 3.06 61 27 12 志留纪 六万大山黑云二长花岗岩 HP-54-02 2.75 7.05 1.35 4.06 1.24 40 29 31 HP-54-04 2.72 8.92 1.48 4.87 1.46 42 26 31 HP-54-05 2.71 7.87 1.61 4.48 1.38 39 30 31 中生代 那周尾组粉砂岩 QZ-16-05 2.35 16.7 4.00 0.13 1.91 53 47 1 古生代 莲花山组石英砂岩 HP-49-02 2.61 12.8 1.21 2.30 1.36 63 22 15 HP-49-04 2.75 5.81 0.65 1.68 0.74 55 23 22 新元古代 片麻岩 QZ-22-B5 2.75# 21.0 2.20 6.21 2.65 56 22 22 QZ-22-B1 2.75# 20.2 2.26 5.80 2.57 55 23 22 中国花岗岩类 2.66* 16.0* 2.80* 4.32* 2.20 50 32 18 中国玄武岩 3.00* 3.0* 0.73* 1.45* 0.59 39 35 26 注:ρ为块体密度(g/cm3);A为放射性生热率(μW/m3);AU、ATh、AK为U、Th、K元素热贡献率(%);* 据文献[5] 表 2 研究区典型地质体的热物性参数统计
Table 2. Statistical table of thermophysical parameters of the typical geological bodies from the study area
时代 岩性 样号编号 K ρ C k 第四纪 烟墩玄武岩 WZD-01 2.026 2.59 1.306 0.60 涠洲岛玄武岩 WZD-02 2.136 2.83 0.58 三叠纪 六万大山
堇青花岗岩HP-45-03 3.475 2.70 1.383 0.93 HP-45-04 2.226 2.70 0.60 那丽
堇青花岗岩QZ-22-05 3.013 2.76 0.79 QZ-22-06 3.494 2.71 0.93 旧州
紫苏花岗岩QZ-44-05 2.964 2.75 1.397 0.77 QZ-44-06 2.941 2.72 0.77 QZ-44-10 3.329 2.67 0.89 志留纪 六万大山黑云
二长花岗岩HP-54-03 3.306 2.65 0.794 1.57 HP-54-04 3.145 2.72 1.46 HP-54-05 3.830 2.71 1.78 中生代 那周尾组
粉砂岩QZ-15-01 3.643 2.40 1.295 1.17 QZ-15-02 2.633 2.35 0.87 石夹组硅质灰岩 QZ-08-01 3.238 2.43 1.372 0.97 小董组细砂岩 QZ-43-01 3.884 2.70 1.155 1.25 HP-54-01 4.579 2.75 1.44 莲花山组
石英砂岩HP-49-01 4.288 2.75 1.185 1.32 HP-49-02 4.397 2.61 1.42 莲滩组
变质砂岩QZ-10-01 3.512 2.60 1.14 QZ-25-01 2.582 2.13 1.03 注:ρ为块体密度(g/cm3);K为热导率(W/mK);C为比热容(J/(g·K));k为热扩散率(10-6 m2/s),且k=K/(ρ·C);☆据文献[1] 表 3 研究区水样D、18O同位素分析测试结果
Table 3. Results of D, 18O isotopic analyses of the water samples from the study area
编号 取样地点 水样类型 δDV-SMOW/‰ δ18OV-SMOW/‰ SY01 合浦廉北村 浅井 -48.5 -7.38 SY02 合浦大庄江村 热泉 -50.6 -7.59 SY05 合浦苏屋村 浅井 -44.8 -6.54 SY06 合浦岭咀村 浅井 -47.2 -7.07 SY08 合浦石湾村 浅井 -49.3 -7.35 SY10 合浦苏屋村 浅井 -41.9 -6.15 SY11 合浦石湾镇 热泉 -51.0 -7.52 SY12 合浦石湾镇 热泉 -49.3 -7.59 合1 合浦清水村 地热井 -31.9 -5.16 合2 合浦清水村 地热井 - -5.18 -
[1] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.Wang J Y. Geothermics and its applications[M]. Beijing: China Science Publishing & Media Ltd., 2015(in Chinese). [2] Our World in Data. Installed geothermal energy capacity, 2019[EB/OL]. [2021-4-21]. https://ourworldindata.org/grapher/installed-geothermal-capacity,2020. [3] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205018.htmLin W J, Liu Z M, Ma F, et al. An estimation of HDR resources in China′s mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807-811(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205018.htm [4] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.002 [5] 孙明行, 刘德民, 康志强, 等. 桂东南地区干热型地热资源潜力分析[J]. 地学前缘, 2020, 27(1): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001010.htmSun M H, Liu D M, Kang Z Q, et al. Analysis of hot dry geothermal resource potential in southeastern Guangxi[J]. Earth Science Frontiers, 2020, 27(1): 72-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001010.htm [6] 康志强, 张起钻, 管彦武, 等. 广西干热岩地热资源赋存条件分析[J]. 地学前缘, 2020, 27(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001008.htmKang Z Q, Zhang Q Z, Guan Y W, et al. Analysis on the occurrence condition of geothermal resources of hot dry rock in Guangxi[J]. Earth Science Frontiers, 2020, 27(1): 55-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001008.htm [7] 马峰, 蔺文静, 郎旭娟, 等. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 2015, 34(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htmMa F, Lin W J, Lang X J, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information, 2015, 34(6): 176-181(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm [8] Liu G H, Wang G L, Zhao Z H, et al. A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China[J]. Renewable Energy, 2020, 155: 484-499. doi: 10.1016/j.renene.2020.03.156 [9] Guo C, Qin Y, Lu L L. Terrestrial heat flow and geothermal field characteristics in the Bide-Santang Basin, western Guizhou, South China[J]. Energy Exploration & Exploitation, 2018, 36(5): 1-22. [10] 甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19): 22-27. doi: 10.3981/j.issn.1000-7857.2015.19.002Gan H N, Wang G L, Lin W J, et al. Research on the occurrence types and genetic models of hot dry rock resources in China[J]. Science & Technology Review, 2015, 33(19): 22-27(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2015.19.002 [11] 蔺文静, 甘浩男, 王贵玲, 等. 我国东南沿海干热岩赋存前景及与靶区选址研究[J]. 地质学报, 2016, 90(8): 2043-2058. doi: 10.3969/j.issn.0001-5717.2016.08.031Lin W J, Gan H N, Wang G L, et al. Occurrence prospect of HDR and target site selection study in southeastern of China[J]. Acta Geologica Sinica, 2016, 90(8): 2043-2058(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.08.031 [12] 滕吉文, 司芗, 庄庆祥, 等. 漳州盆地精细壳、幔异常结构与潜在干热岩探讨[J]. 地球物理学报, 2019, 62(5): 1613-1632. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905005.htmTeng J W, Si X, Zhuang Q X, et al. Fine structures of crust and mantle and potential hot dry rock beneath the Zhangzhou Basin[J]. Chinese Journal of Geophysics, 2019, 62(5): 1613-1632(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905005.htm [13] 唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065. doi: 10.3969/j.issn.0001-5717.2020.07.013Tang X C, Wang G L, Ma Y, et al. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe Basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 2020, 94(7): 2052-2065(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.013 [14] 张森琦, 李旭峰, 宋健, 等. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学, 2021, 46(4): 1416-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104016.htmZhang S Q, Li X F, Song J, et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 2021, 46(4): 1416-1436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104016.htm [15] 王登红, 陈毓川, 江彪, 等. 中国三叠纪大陆成矿体系[J]. 地学前缘, 2020, 27(2): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002005.htmWang D H, Chen Y C, Jiang B, et al. Preliminary study on the Triassic continental mineralization system in China[J]. Earth Science Frontiers, 2020, 27(2): 45-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002005.htm [16] 邓希光, 陈志刚, 李献华, 等. 桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年[J]. 地质论评, 2004, 50(4): 426-432. doi: 10.3321/j.issn:0371-5736.2004.04.014Deng X G, Chen Z G, Li X H, et al. SHRIMP U-Pb zircon dating of the Darongshan-Shiwandashan granitoid belt in Southeastern Guangxi, China[J]. Geological Review, 2004, 50(4): 426-432(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.04.014 [17] Najman Y, Appel E, Boudagher-Fadel M, et al. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12416. doi: 10.1029/2010JB007673 [18] Wu F Y, Ji W Q, Wang J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of Indina-Asia collision[J]. American Journal of Science, 2014, 324: 548-579. [19] 李三忠, 曹现志, 王光增, 等. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905005.htmLi S Z, Cao X Z, Wang G Z, et al. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 2019, 25(5): 642-677(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905005.htm [20] Taylor B, Hayes D E. Origin and history of the South China Sea Basin[M]. USA: American Geophysical Union(AGU), 2013. [21] 姚伯初, 万玲. 南海岩石圈厚度变化特征及其构造意义[J]. 中国地质, 2010, 37(4): 888-899. doi: 10.3969/j.issn.1000-3657.2010.04.006Yao B C, Wan L. Variation of the lithospheric thickness in the South China Sea area and its tectonic significance[J]. Geology China, 2010, 37(4): 888-899(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.04.006 [22] 杨文健, 于红梅, 赵波, 等. 广西涠洲岛晚新生代玄武岩地幔源区及岩浆成因[J]. 岩石学报, 2020, 36(7): 2092-2110. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202007011.htmYang W J, Yu H M, Zhao B, et al. Mantle sources and magma genesis of Late Cenozoic basalts in Weizhou Island, Guangxi, China[J]. Acta Petrologica Sinica, 2020, 36(7): 2092-2110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202007011.htm [23] Rybach L. Radioactive heat flowproduction in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics, 1976, 114(2): 309-318. doi: 10.1007/BF00878955 [24] Smithson S B, Decker E R. A continental crustal model and its geothermal implications[J]. Elsevier, 1974, 22(3): 215-225. [25] Wright P M, Ward S H, Ross H P, et al. State-of-the-art geophysical exploration for geophysical for geothermal resources[J]. Geophysics, 1985, 50(12): 2: 666-2699. doi: 10.1190/1.1441889 [26] 刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htmLiu D M, Zhang C S, Sun M H, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm [27] 王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103002.htmWang S Q, Zhang B J, Li Y Y, et al. Heat accumulation mechanism of deep ancient buried hill in the northeast of Gaoyang geothermal field, Xiong′an New Area[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 12-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103002.htm [28] 陈金龙, 罗文行, 窦斌, 等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报, 2021, 40(3): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103003.htmChen J L, Luo W X, Dou B, et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103003.htm [29] Feng Y F, Zhang X X, Zhang B, et al. The geothermal formation mechanism in the Gonghe Basin: Discussion and analysis from the geological background[J]. Acta Geologica Sinica, 2018, 1(3): 331-345. [30] 李林果, 李百祥. 从青海共和-贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201701005.htmLi L G, Li B X. A discussion on the heat source mechanism and geothermal system of Gonghe-Guide Basin and mountain geothermal field in Qinghai Province[J]. Geophysical & Geochemical Exploration, 2017, 41(1): 29-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201701005.htm [31] 张森琦, 吴海东, 张杨, 等. 青海省贵德县热水泉干热岩体地质-地热地质特征[J]. 地质学报, 2020, 94(5): 1591-1605. doi: 10.3969/j.issn.0001-5717.2020.05.017Zhang S Q, Wu H D, Zhang Y, et al. Characteristics of regional and geothermal geology of the Reshuiquan HDR in Guide County, Qinghai Province[J]. Acta Geologica Sinica, 2020, 94(5): 1591-1605(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.05.017 [32] Didana Y L, Thiel S, Heinson G. Magnetotelluric imaging of upper crustal partial melt at Tendaho graben in Afar, Ethiopia[J]. Geophysical Research Letters, 2014, 41(9): 3089-3095. doi: 10.1002/2014GL060000 [33] 杨晓松, 金振民. 壳内部分熔融低速层及其研究意义[J]. 地球物理学进展, 1998, 13(3): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.003.htmYang X S, Jin Z M. The low velocity zone resulted from crustal partial melting and its significance[J]. Progress in Geophysics, 1998, 13(3): 3-5(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.003.htm [34] Wang Q, Hawkesworth C J, Wyman D, et al. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow[J]. Nature Communications, 2016, 7: 1-11. [35] Kelsey D E. On ultrahigh-temperature crustal metamorphism[J]. Gondwana. Res., 2008(1): 1-29. [36] 蔡学林, 朱介寿, 程先琼, 等. 南海复蘑菇状地幔低速柱结构及其地幔动力学[J]. 中国地质, 2010, 37(2): 268-279. doi: 10.3969/j.issn.1000-3657.2010.02.002Cai X L, Zhu J S, Cheng X Q, et al. The structure of the composite mushroom-shaped mantle plume in the South China Sea and its mantle dynamics[J]. Geology in China, 2010, 37(2): 268-279(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.02.002 [37] Arevalo R, McDonough W F, Luong M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution[J]. Earth and Planetary Science Letters, 2008, 278(3): 361-369. [38] Chen D, Wyborn D. Habanero field tests in the Cooper Basin, Australia: A proof-of-concept for EGS[J]. Transactions-Geothermal Resources Council, 2009, 33: 140-145. [39] Maggi A, Jackson J A, Mckenzie D, et al. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere[J]. Geology, 2000, 28(6): 495-498. doi: 10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2 [40] 熊亮萍, 高维安. 隆起与坳陷地区地温场的特点[J]. 地球物理学报, 1982(5): 448-456. doi: 10.3321/j.issn:0001-5733.1982.05.008Xiong L P, Gao W A. Characteristics of geotherm in uplift and depression[J]. Acta Geophysica Sinica, 1982(5): 448-456(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1982.05.008 [41] Petitjean S, Rabinowicz M, Grégoire M, et al. Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity[J]. Geochemistry Geophysics Geosystems, 2006, 7(3): 3021-3047. [42] 毛翔, 国殿斌, 罗璐, 等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 2019, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htmMao X, Guo D B, o L, et al. The global development process of hot dry rock(enhanced geothermal system)and its geological background[J]. Geological Review, 2019, 65(6): 1462-1472(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm [43] Lay T, Hernlund J, Buffett B A. Core-mantle boundary heat flow[J]. Nature Geoscience, 2008, 1(1): 25-32. doi: 10.1038/ngeo.2007.44 [44] Furlong K P, Chapman D S. Heat flow, heat generation, and thermal state of the lithosphere[J]. Annual Review of Earth & Planetary Sciences, 2013, 41(1): 385-410.