留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SSA-Adam-BP神经网络模型的堰塞坝稳定性预测

宋宜祥 张晓波 黄达

宋宜祥, 张晓波, 黄达. 基于SSA-Adam-BP神经网络模型的堰塞坝稳定性预测[J]. 地质科技通报, 2022, 41(2): 130-138. doi: 10.19509/j.cnki.dzkq.2022.0040
引用本文: 宋宜祥, 张晓波, 黄达. 基于SSA-Adam-BP神经网络模型的堰塞坝稳定性预测[J]. 地质科技通报, 2022, 41(2): 130-138. doi: 10.19509/j.cnki.dzkq.2022.0040
Song Yixiang, Zhang Xiaobo, Huang Da. Stability prediction of landslide dams based on SSA-Adam-BP neural network model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 130-138. doi: 10.19509/j.cnki.dzkq.2022.0040
Citation: Song Yixiang, Zhang Xiaobo, Huang Da. Stability prediction of landslide dams based on SSA-Adam-BP neural network model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 130-138. doi: 10.19509/j.cnki.dzkq.2022.0040

基于SSA-Adam-BP神经网络模型的堰塞坝稳定性预测

doi: 10.19509/j.cnki.dzkq.2022.0040
基金项目: 

国家自然科学基金项目 41902290

国家自然科学基金项目 41672300

国家自然科学基金项目 41972297

河北省自然科学基金项目 D2020202002

河北省自然科学基金项目 D202102002

详细信息
    作者简介:

    宋宜祥(1987—),男,讲师,硕士生导师,主要从事地质灾害和岩土工程数值模拟研究。E-mail: syxdlut2010@163.com

    通讯作者:

    黄达(1976—),男,教授,博士生导师,主要从事岩石力学与地质灾害方面研究。E-mail: dahuang@hebut.edu.cn

  • 中图分类号: P642.2

Stability prediction of landslide dams based on SSA-Adam-BP neural network model

  • 摘要: 现有的堰塞坝稳定性预测模型多为线性模型, 无法充分考虑堰塞坝稳定性与其形态特征和水域条件之间的复杂非线性关系。鉴于此, 结合反向传播神经网络模型和樽海鞘优化算法, 提出了一种新型的堰塞坝稳定性预测模型SSA-Adam-BP。该模型通过网格搜索法选取确定模型结构的最佳超参数组合, 进而利用交叉验证和绘制ROC曲线的方式分别对采用不同优化算法的模型进行评估。使用开源数据库中的全球153例堰塞坝数据对模型的实际应用进行了说明及验证。与传统线性模型的对比表明神经网络模型预测准确率较高, 具有较低的误报率。将SSA与Adam优化算法结合提高了BP模型的全局搜索能力, 其平均交叉验证准确率达到了91.73%, 能够使用较少的参数实现对堰塞坝稳定性快速准确的预测。SSA-Adam-BP模型对近年来典型工程的稳定性能够准确预测, 具有一定的实用性和系统平台推广应用价值。

     

  • 图 1  单隐藏层BP神经网络结构图

    Figure 1.  BP neural network structure of single hidden layer

    图 2  SSA-Adam-BP神经网络训练流程图

    Figure 2.  Flow chart of SSA-Adam-BP neural network training

    图 3  采用不同处理方式的变量分布示意图

    Figure 3.  Schematic diagrams of variable distribution using different processing methods

    图 4  不同BP神经网络模型的ROC曲线及AUC

    Figure 4.  ROC curve and AUC value of different BP neural network models

    图 5  预测失误案例位置分布图

    Figure 5.  Location distribution map of prediction error cases

    图 6  中国32例堰塞坝的稳定性预测结果

    Figure 6.  Stability prediction results of 32 landslide dams in China

    表  1  Ermini堰塞坝数据库

    Table  1.   Landslide dam database established by Ermini

    序号 坝体高度H/m 坝体体积V/m3 集水区面积A/km2 稳定性分类 参考文献
    1 20 1 500 000 5 SD [10]
    2 15 400 000 15 SD [10]
    84 90 18 000 000 147 UD [10]
    下载: 导出CSV

    表  2  Tabata堰塞坝数据库

    Table  2.   Landslide dam database established by Tabata

    序号 坝体高度H/m 坝体体积V/m3 集水区面积A/km2 稳定性分类 参考文献
    1 10 180 000 60 UD [26]
    2 20 100 000 83 UD [26]
    37 20 22 000 14.5 SD [26]
    下载: 导出CSV

    表  3  121例堰塞坝数据基本统计信息

    Table  3.   Basic statistical information of 121 cases based on the landslide dam database

    特征变量 坝体高度H/m 坝体体积V/m3 集水区面积A/km2
    最小值 3.00 8.70×107 0.19
    最大值 500.00 2.20×109 4.50×104
    平均值 52.88 5.70×107 731.61
    标准差 65.87 2.86×108 4 321.71
    下载: 导出CSV

    表  4  Shapiro-Wilk检验结果

    Table  4.   Testing results of Shapiro-Wilk

    变量 统计量W p 在5%水平下的结论
    H 0.68 0.00 排除正态性
    V 0.19 0.00 排除正态性
    A 0.14 0.00 排除正态性
    lg(H′) 0.99 0.79 不能排除正态性
    lg(V′) 0.999 0.70 不能排除正态性
    lg(A′) 0.99 0.11 不能排除正态性
    下载: 导出CSV

    表  5  不同BP神经网络模型的交叉验证准确率

    Table  5.   Cross-verification accuracy of different BP neural network models

    模型 准确率/% 平均准确率/%
    K=1 K=2 K=3 K=4 K=5
    Adam-BP 87.50 87.50 91.67 91.67 88.00 89.27
    SSA-BP 87.50 83.33 91.67 91.67 88.00 88.43
    SSA-Adam-BP 91.67 87.50 95.83 91.67 92.00 91.73
    下载: 导出CSV

    表  6  堰塞坝稳定性线性预测模型

    Table  6.   Linear prediction model of landslide dam stability

    提出者 判别公式 判别标准
    Ermini等[10] $DBI = {\rm{lg}}\left( {\frac{{A \times H}}{V}} \right)$ DBI < 2.75稳定;
    2.75 < DBI < 3.08
    无法确定;DBI>3.08
    不稳定
    Dong等[27] $\begin{array}{c} D = - 2.13{\rm{lg}}\left( A \right) - \\ 4.08{\rm{lg}}\left( H \right) + \\ 2.94{\rm{lg}}\left( V \right) + 4.09 \end{array}$ D>0稳定;
    D≤0不稳定
    Dong等[28] $\begin{array}{c} {L_{\rm{s}}} = - 4.48{\rm{lg}}\left( A \right) - \\ 9.31{\rm{lg}}\left( H \right) + \\ 6.61{\rm{lg}}\left( V \right) + 6.39\\ {P_{\rm{s}}} = \frac{1}{{1 + {{\rm{e}}^{ - {L_{\rm{s}}}}}}} \end{array}$ Ps>0.5稳定;
    Ps≤0.5不稳定
    下载: 导出CSV

    表  7  各堰塞坝稳定性预测模型的预测结果

    Table  7.   Prediction results of the stability prediction models of landslide dams

    模型 准确数量 准确率/% 误报数量 误报率/%
    DBI 23 62.16 7 18.92
    AHV_Dis 26 70.27 6 16.22
    AHV_Log 27 72.97 5 13.51
    SSA-Adam-BP 32 86.49 1 2.70
    下载: 导出CSV

    表  8  各输入参数的平均影响值

    Table  8.   Mean influence value of each input parameter

    影响因素 Y1 Y2 平均影响值
    坝体高度 32.04 46.31 -0.17
    坝体体积 55.54 23.56 0.38
    集水区面积 31.02 51.27 -0.24
    下载: 导出CSV

    表  9  中国近年来典型堰塞坝事件[31]

    Table  9.   Typical landslide dam cases in China in recent years

    序号 形成时间 名称 坝体高度H/m 坝体体积V/m3 集水区面积A/km2 稳定性分类
    1 2000 易贡 80 300 000 000 13 533 不稳定
    2 2008 白果村 15 400 000 3 564 不稳定
    32 2018 白格(2) 81 10 000 000 173 484 不稳定
    下载: 导出CSV
  • [1] 年廷凯, 吴昊, 陈光齐, 等. 堰塞坝稳定性评价方法及灾害链效应研究进展[J]. 岩石力学与工程学报, 2018, 37(8): 1796-1812. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808003.htm

    Nian T K, Wu H, Chen G Q, et al. Research progress on stability evaluation method and disaster chain effect of landslide dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1796-1812(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808003.htm
    [2] Zhong Q M, Chen S S, Mei S A, et al. Numerical simulation of landslide dam breaching due to overtopping[J]. Landslides, 2018, 15(6): 1183-1192. doi: 10.1007/s10346-017-0935-3
    [3] Costa J E, Schuster R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin, 1988, 100(7): 1054-1068. doi: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
    [4] 石振明, 马小龙, 彭铭, 等. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型[J]. 岩石力学与工程学报, 2014, 33(9): 1780-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm

    Shi Z M, Ma X L, Peng M, et al. Statistical analysis of dam characteristics based on large-scale database and rapid evaluation model of collapse parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1780-1790(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm
    [5] 叶华林. 基于堰塞坝几何形态的数理统计对其稳定性影响研究[D]. 成都: 西南交通大学, 2018.

    Ye H L. Research on the influence of mathematical statistics based on the geological characteristics of dam dams to its stability[D]. Chengdou: Southwest Jiaotong University, 2018(in Chinese with English abstract).
    [6] FanX M, Dufresne A, Subramanian S S, et al. The formation and impact of landslide dams: State of the art[J]. Earth-Science Reviews, 2020, 203: 103116. doi: 10.1016/j.earscirev.2020.103116
    [7] 彭铭, 王开放, 张公鼎, 等. 堰塞坝溃坝模型实验研究综述[J]. 工程地质学报, 2020, 28(5): 1007-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005010.htm

    Peng M, Wang K F, Zhang G D, et al. Review of model experimental studies on break of landslide dams[J]. Journal of Engineering Geology, 2020, 28(5): 1007-1015(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005010.htm
    [8] Costa J E, Schuster R L. Documented historical landslide dams from around the world[R]. : US Geological Survey Open-file Report, 1991: 91-239.
    [9] Casagli N, Ermini L. Geomorphic analysis of landslide dams in the Northern Apennine[J]. Chikei, 1999, 20(3): 219-249.
    [10] Ermini L, Casagli N. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index[J]. Earth Surface Processes & Landforms, 2003, 28(1): 31-47.
    [11] Korup O. Geomorphometric characteristics of New Zealand landslide dams[J]. Engineering Geology, 2004, 73(1/2): 13-35.
    [12] Stefanelli C T, Catani F, Casagli N. Geomorphological investigations on landslide dams[J]. Geoenvironmental Disasters, 2015, 2(1): 1-15. doi: 10.1186/s40677-014-0008-z
    [13] Stefanelli C T, Segoni S, Casagli N, et al. Geomorphic indexing of landslide dams evolution[J]. Engineering Geology, 2016, 208: 1-10. doi: 10.1016/j.enggeo.2016.04.024
    [14] Shan Y B, Chen S S, Zhong Q M. Rapid prediction of landslide dam stability using the logistic regression method[J]. Landslides, 2020, 17(12): 2931-2956. doi: 10.1007/s10346-020-01414-6
    [15] 罗丹, 李昌彩, 吴长彬. 基于微粒群-BP神经网络算法的堆石坝坝体变形监控模型研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2926-2931. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1043.htm

    Luo D, Li C C, Wu C B. Study of monitoring model of faced rockfill dam's deformation based on particle swarm optimization-bp algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2926-2931(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1043.htm
    [16] 郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12): 4299-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912040.htm

    Guo Z Z, Yin K L, Fu S, et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science, 2019, 44(12): 4299-4312(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912040.htm
    [17] 马瑶, 赵江南. 机器学习方法在矿产资源定量预测应用研究进展[J]. 地质科技通报, 2021, 40(1): 132-141. doi: 10.19509/j.cnki.dzkq.2021.0108

    Ma Y, Zhao J N. Advances in the application of machine learning methods in mineral prospectivity mapping[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 132-141(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0108
    [18] 焦敬品, 李勇强, 吴斌, 等. 基于BP神经网络的管道泄漏声信号识别方法研究[J]. 仪器仪表学报, 2016, 37(11): 2588-2596. doi: 10.3969/j.issn.0254-3087.2016.11.023

    Jiao J P, Li Y Q, Wu B, et al. Research on identi-fication method of pipeline leakage sound signal based on bpneural network[J]. Journal of Instrumentation, 2016, 37(11): 2588-2596(in Chinese with English abstract). doi: 10.3969/j.issn.0254-3087.2016.11.023
    [19] Hecht-Nielsen R. Theory of the backpropagation neural network[J]. Neural Networks, 1988, 1: 593-605.
    [20] Guo Z Z, Chen L X, Gui L, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model[J]. Landslides, 2020, 17: 567-583. doi: 10.1007/s10346-019-01314-4
    [21] Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. doi: 10.1016/j.advengsoft.2017.07.002
    [22] 刘小龙, 许岩, 徐维军. 基于统计引导和多项式差分学习的樽海鞘优化算法[J]. 运筹与管理, 2021, 30(1): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202101008.htm

    Liu X L, Xu Y, Xu W J. Salp swarm algorithm based on statistical guidance and polynomial difference learning[J]. Operations Research and Management Science, 2021, 30(1): 43-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202101008.htm
    [23] 杨晓帆, 陈廷槐. 人工神经网络固有的优点和缺点[J]. 计算机科学, 1994, 21(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA199402004.htm

    Yang X F, Chen T H. Inherent advantages and disadvantages of artificial neural networks[J]. Computer Science, 1994, 21(2): 23-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA199402004.htm
    [24] Kingma D, Ba J. Adam: A method for stochastic optimization[C]//International Conference Leaning Representation. :, 2015: 1-13.
    [25] 万里明, 吴均, 卢军凯, 等. 基于Adam-神经网络的致密砂岩脆性评价方法: 以南堡凹陷高北边坡为例[J]. 地质科技通报, 2020, 39(2): 94-103. doi: 10.19509/j.cnki.dzkq.2020.0210

    Wan L M, Wu J, Lu J K, et al. Brittleness evaluation method of tight sandstone based on Adam-neural network: A case study of a block in Gaobei Slope, Nanpu Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 94-103(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0210
    [26] Tabata S, Mizuyama T, Inoue K. Natural landslide dams hazards[J]. Engineering Geology, 2002, 110(3): 162-171.
    [27] Dong J J, Tung Y H, Chen C C, et al. Discriminant analysis of the geomorphic characteristics and stability of landslide dams[J]. Geomorphology, 2009, 110(3): 162-171.
    [28] Dong J J, Tung Y H, Chen C C, et al. Logistic regression model for predicting the failure probability of a landslide dam[J]. Engineering Geology, 2011, 117(1/2): 52-61.
    [29] 柴贺军, 刘汉超, 张倬元. 大型崩滑堵江事件及其环境效应研究综述[J]. 地质科技情报, 2000, 19(2): 87-90. doi: 10.3969/j.issn.1000-7849.2000.02.021

    Chai H J, Liu H C, Zhang Z Y. The study on the environment and environmental effects of the collapse and closure of the Yangtze River[J]. Geological Science and Technology Information, 2000, 19(2): 87-90(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2000.02.021
    [30] 黄健, 贺子城, 黄祥, 等. 基于地貌特征的滑坡堰塞坝形成敏感性研究[J]. 地质科技通报, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040

    Huang J, He Z C, Huang X, et al. Formation sensitivity of landslide dam based on geomorphic characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 253-262(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0040
    [31] 单熠博, 陈生水, 钟启明. 堰塞体稳定性快速评价方法研究[J]. 岩石力学与工程学报, 2020, 39(9): 1847-1859. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009011.htm

    Shan Y B, Chen S S, Zhong Q M. A rapid evaluation method of landslide dam stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1847-1859(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009011.htm
    [32] 罗宗伟. 抛掷爆破技术在马鞍石堰塞湖应急排险处置中的应用[J]. 水利水电技术, 2008(8): 31-32, 35. doi: 10.3969/j.issn.1000-0860.2008.08.010

    Luo Z W. Application of casting blast to emergency treatment of risk-elimination of Maanshi Landslide Dam[J]. Water Resources and Hydropower Engineering, 2008(8): 31-32, 35(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0860.2008.08.010
    [33] 柴贺军, 刘汉超, 张倬元, 等. 天然土石坝稳定性初步研究[J]. 地质科技情报, 2001, 20(1): 77-81. doi: 10.3969/j.issn.1000-7849.2001.01.017

    Chai H J, Liu H C, Zhang Z Y, et al. Preliminarily stability analysis of natural rock field dam resulting from damming landslide[J]. Geological Science and Technology Information, 2001, 20(1): 77-81(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2001.01.017
    [34] 张宗亮, 程凯, 杨再宏, 等. 红石岩堰塞坝应急处置与整治利用关键技术[J]. 水电与抽水蓄能, 2020, 6(2): 1-10, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202002002.htm

    Zhang Z L, Cheng K, Yang Z H, et al. Key technology of emergency remedy and treatment for hongshiyan barriers lake dam[J]. Hydropower and Pumped Storage, 2020, 6(2): 1-10, 25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202002002.htm
    [35] 刘建康, 程尊兰, 佘涛. 云南鲁甸红石岩堰塞湖溃坝风险及其影响[J]. 山地学报, 2016, 34(2): 208-215. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201602013.htm

    Liu J K, Cheng Z L, She T. Assessment of dam failure and secondary hazards for Hongshiyan dammed lake caused by Ludian earthquake in Niulanjiang River[J]. Journal of Mountain Science, 2016, 34(2): 208-215(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201602013.htm
  • 加载中
图(6) / 表(9)
计量
  • 文章访问数:  763
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10

目录

    /

    返回文章
    返回