Influence of bedrock depth on the seismic response of a nuclear reactor building foundation considering soil structure interaction
-
摘要: 地震会对核电站安全造成影响。随着核电站的数量越来越多, 有必要关注在地震下核电站的安全。核反应堆厂房是核电站重要的组成部分, 研究其地震响应对核电站有着重要意义。基于直接法, 考虑了3种不同场地(中硬土、软岩、硬岩)在地震下的塑性变形和土的滞回阻尼, 使用FLAC3D对土-核反应堆厂房模型系统进行了三维建模。为了捕捉上部结构与下部岩石/土壤之间的分离与滑动, 在核反应堆厂房基础与岩石/土壤表面设置接触面单元。上层结构以集总质量模型模拟, 同时考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响, 最终得到核反应堆厂房结构杆件的加速度反应谱、剪力、基础的摇动和基础不均匀沉降以及侧向位移。结果表明: 在中硬土场地中, 位移、剪切力随基岩深度的增大而减小; 在硬岩场地中, 位移和剪切力响应的规律呈相反趋势; 在软岩场地中, 上部结构响应的规律较为复杂。对于基础摇动和基础不均匀沉降, 在中硬土场地中, 其呈现的规律随基岩深度增大而减小; 在软岩和硬岩场地中, 并无明显规律。基础不均匀沉降可直接反映结构的破坏情况。中硬土场地下基础不均匀沉降超过容许值, 所以基础不均匀沉降对核反应堆厂房的影响不容忽视, 这对核电站的安全设计十分重要。Abstract: Earthquakes events can impact on safety of nuclear power plants. With the increasing number of nuclear power plants, the necessity of seismic safety of nuclear power plants becomes higher than ever before. Nuclear reactor building is an important part of nuclear power plant, so the importance to understand its seismic response is critical.Adopting the direct method, this paper utilized FLAC3D to model the soil-nuclear reactor building three-dimensionally on three different site conditions(medium hard soil, soft rock and hard rock).To capture the separation and sliding between the superstructure and the rock/soil deposit, Interface elements were set between the foundation of the nuclear reactor building and the rock/soil surface. The superstructure was simulated by lumped mass model, and the influence of bedrock depth on the seismic response of nuclear reactor building was investigated considering soil structure interaction. Finally, the acceleration response spectrum, shear force, foundation rocking, foundation differential settlement and lateral displacement of the structural members of the nuclear reactor building were obtained. The results show that the displacement and shear force decreased with the increasein bedrock depth in medium hard soil; In the hard rock site, the trends tended to be opposite; However, under the condition of soft rock site, the response of superstructure is more complex. For the foundation rocking and differential settlement, in the medium hard soil site, the reactions decreased with the increase in bedrock depth; In soft and hard rock sites, there is no obvious trend. The differential settlement of foundation can directly reflect the damage of structure. The results show that the differential settlement of foundation in medium hard soil site exceeded the allowable value, so the influence of differential settlement of foundation on nuclear reactor building can not be ignored, which is important for the safety design of nuclear power plant.
-
表 1 岩石或土壤参数
Table 1. Parameters of rock/soil
表 2 安全壳杆件的最大x向位移
Table 2. Maximum x-direction displacement of containment beam
最大输入加速度/g 基岩深度/ m 中硬土 软岩 硬岩 位移/mm 0.3 15 2.36 2.54 1.71 30 2.14 2.35 1.84 45 2.07 2.30 1.84 0.6 15 3.63 3.93 2.31 30 3.28 3.68 2.57 45 3.19 3.53 2.52 0.9 15 4.54 4.99 2.61 30 4.09 4.69 3.09 45 3.97 4.67 3.06 表 3 设备杆件的最大x向位移
Table 3. Maximum x-direction displacement of the facility beam
最大输入加速度/g 基岩深度/ m 中硬土 软岩 硬岩 位移/mm 0.3 15 2.04 1.83 1.47 30 1.95 1.74 1.49 45 1.86 1.62 1.54 0.6 15 2.73 2.41 2.33 30 2.52 2.25 2.34 45 2.43 2.18 2.30 0.9 15 3.11 3.05 3.17 30 2.90 2.74 3.17 45 2.90 2.76 3.20 -
[1] 李永乐, 陈宇, 彭成山, 等. 地震作用下的灰坝液化特征及其动力稳定性分析: 以安阳电厂为例[J]. 地质科技情报, 2002, 21(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htmLi Y L, Chen Y, Peng C S, et al. Liquefied characters and dynamic stability of ash dam of the anyang power plant under the action of earthquake[J]. Geological Science and Technology Information, 2002, 21(1): 83-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htm [2] 王大伟, 刘震, 赵伟, 等. 砂泥岩互层油藏时移地震差异波形特征[J]. 地质科技情报, 2007, 26(4): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704021.htmWang D W, Liu Z, Zhao W, et al. Characteristics of Time-Lapse Seismic Waveform for Sand-Mud Interbed[J]. Geological Science and Technology Information, 2007, 26(4): 107-110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704021.htm [3] 杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517Yang L, Shi X Y, Chen Q, et al. Mechanism and laws of deterioration and damage of gneisses under cyclic loading[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517 [4] 付鑫, 杜晓峰, 官大勇, 等. 地震沉积学在河流-浅水三角洲沉积相研究中的应用: 以渤海海域蓬莱A构造区馆陶组为例[J]. 地质科技通报, 2021, 40(3): 96-108. doi: 10.19509/j.cnki.dzkq.2021.0304Fu X, Du X F, Guan D Y, et al. Application of seismic sedimentology in reservoir prediction in fluvial to shallow water delta facies: A case study in Guantao Formation from the Penglai A structure area in Bohai Bay[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 96-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0304 [5] 段谟东, 叶加仁, 吴景富, 等. 低勘探程度区域压力分布预测及超压形成机制: 以东海陆架盆地西湖凹陷为例[J]. 地质科技通报, 2020, 39(3): 129-139. doi: 10.19509/j.cnki.dzkq.2020.0314Duan M D, Ye J R, Wu J F, et al. Prediction of pressure distribution and formation mechanism in low exploration area: A case study of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 129-139(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0314 [6] 中华人民共和国建设部. 核电厂抗震设计规范: GB50267-1997[S]. 北京: 中国计划出版社, 1997.Ministry of housing and urban rural development of the people's Republic of China. Code for seismic design of nuclear power plants: GB50267-1997[S]. Beijing: China Planning Press, 1997(in Chinese). [7] 高永武, 王涛, 戴君武, 等. 不同场地条件下某新型核电厂房的地震响应试验研究[J]. 振动与冲击, 2017, 36(18): 214-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718032.htmGao Y W, Wang T, Dai J W, et al. Experimental research on seismic responses of a new type of nuclear power plant under different site conditions[J]. Journal of Vibration and Shock, 2017, 36(18): 214-222(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718032.htm [8] Ghosh B, Madabhushi S P G. Centrifuge modelling of seismic soil structure interaction effects[J]. Nuclear Engineering and Design, 2007, 237(8): 887-896. [9] 侯春林, 李小军. 不同输入界面对AP1000核岛结构设计地基地表地震动的影响[J]. 核动力工程, 2013, 34(2): 141-146, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302034.htmHou C L, Li X J. Effects of seismic wave inputting interface on designed surface ground motion in AP1000 Nuclear Island Structure[J]. Nuclear Power Engineering, 2013, 34(2): 141-146, 152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302034.htm [10] 戴志军, 李小军, 侯春林. 场地硬夹层对核电厂结构地震响应的影响分析[J]. 应用基础与工程科学学报, 2019, 27(6): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906009.htmDai Z J, Li X J, Hou C L. Influence analysis of hard interlayers in soil site on seismic response of the nuclear power plant structure[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1285-1293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906009.htm [11] 徐磊, 陈国兴. 地震基岩面选取对核岛场地地表地震反应影响[J]. 地震工程与工程振动, 2014, 34(6): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201406015.htmXu L, Chen G X. Effects of the soil depth of seismic bedrock interface on ground surface seismic response of nuclear island site[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(6): 113-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201406015.htm [12] Li F R, Chen G X. Nonlinear seismic response characteristics of CAP1400 nuclear island structure on soft rock sites[J]. Science and Technology of Nuclear Installations, 2020, 2020: 1-17. [13] De Borbón F, Domizio M, Ambrosini D, et al. Influence of various parameters in the seismic soil-structure interaction response of a nuclear power plant[J]. Engineering Structures, 2020, 217: 110820. [14] 李培振, 吕西林, 陈波, 等. 均匀土-箱基-结构相互作用体系的计算分析[J]. 地震工程与工程振动, 2002, 22(5): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200205020.htmLi P Z, Lü X L, Chen B, et al. Computer analysis of soil-box foundation-structure dynamic interaction by ANSYS program[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(5): 115-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200205020.htm [15] Abell J A, Orbovi N, Mccallen D B, et al. Earthquake soil-structure interaction of nuclear power plants, differences in response to 3-D, 3×1-D, and 1-D excitations[J]. Earthquake Engineering Structural Dynamics, 2018, 47(6): 1478-1495. [16] 薄景山, 李秀领, 刘德东, 等. 土层结构对反应谱特征周期的影响[J]. 地震工程与工程振动, 2003, 23(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200305007.htmBo J S, Li X L, Liu D D, et al. Effects of soil layer construction on characteristic periods of response spectra[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(5): 42-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200305007.htm [17] 王国新, 黄坤朋. 表层土结构对地表地震动的影响研究[J]. 地震工程与工程振动, 2013, 33(5): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201305005.htmWang G X, Huang K P. Effects of surface soil on ground motion characters[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(5): 33-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201305005.htm [18] 来春景, 朱彦鹏, 王春青, 等. 黄土高填方场地地震动参数特性分析[J]. 地震工程学报, 2018, 40(6): 1168-1173, 1223. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201806004.htmLai J C, Zhu Y P, Wang C Q, et al. Characteristics of ground motion parameters of loess-high filling sites[J]. China Earthquake Engineeing Journal, 2018, 40(6): 1168-1173, 1223(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201806004.htm [19] Hokmabadi A S, Fatahi B, Samali B. Seismic response of mid-rise buildings on shallow and end-bearing pile foundations in soft soil[J]. Soils and Foundations, 2014, 54(3): 345-363. [20] Hokmabadi A S, Fatahi B, Samali B. Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations[J]. Computers and Geotechnics, 2014, 55: 172-186. [21] Reza-Tabatabaiefar S H, Fatahi B, Samali B. Seismic behavior of building frames considering dynamic soil-structure interaction[J]. International Journal of Geomechanics, 2013, 13(4): 409-420. [22] 李忠献, 李忠诚, 沈望霞. 核反应堆厂房结构楼层反应谱的敏感性分析[J]. 核动力工程, 2005, 26(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200501009.htmLi Z X, Li Z C, Shen W X. Sensitivity analysis for floor response spectra of nuclear reactor buildings[J]. Nuclear Power Engineering, 2005, 26(1): 44-50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200501009.htm [23] 朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htmZhu S D, Chen G X, Jiang P C, et al. 3D nonlinear response characteristics of the pile-raft-supported Ap1000 nuclear island building in soft deposits subjected to strong ground motions[J]. Engineering Mechanics, 2021, 38(1): 129-142(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm [24] Commission U N R. Regulatory guide 1.61: Damping values for seismic design of nuclear power plants[M]. [S. l. ]: US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2007. [25] He W, Liu W, Yang Q, et al. Study on dynamic response of large and small aspect ratio isolated buildings[J]. The Structural Design of Tall Special Buildings, 2014, 23(17): 1329-1344. [26] Liu W, Xu H, He W, et al. Static test and seismic dynamic response of an innovative 3D seismic isolation system[J]. Journal of Structural Engineering, 2018, 144(12): 04018212. [27] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB50011-2010[S]. 北京: 中国建筑工业出版社, 2010.Ministry of housing and urban rural development of People's Republic of China. Code for seismic design of buildings: GB50011-2010[S]. Beijng: China Construction Industry Press, 2010(in Chinese). [28] Bertuzzi R. Sydney sandstone and shale parameters for tunnel design[J]. Australian Geomechanics, 2014, 49(1): 1-40. http://www.researchgate.net/publication/293078066_Sydney_sandstone_and_shale_parameters_for_tunnel_design/download [29] Reza-Tabatabaiefar S H, Fatahi B, Samali B. Seismic behavior of building frames considering dynamic soil-structure interaction[J]. International Journal of Geomechanics, 2013, 13(4): 409-420. [30] Lin F, Tang H. Nuclear containment structure subjected to commercial aircraft crash and subsequent vibrations and fire[J]. Nuclear Engineering and Design, 2017, 322: 68-80. [31] Kramer S L. Geotechnical earthquake engineering[M]. [S. l. ]: Pearson Education India, 1996. [32] Conniff D E, Kiousis P D. Elastoplastic medium for foundation settlements and monotonic soil-structure interaction under combined loadings[J]. International Journal for Numerical Analytical Methods in Geomechanics, 2007, 31(6): 789-807. [33] Rayhani M, El Naggar M H. Numerical modeling of seismic response of rigid foundation on soft soil[J]. International Journal of Geomechanics, 2008, 8(6): 336-346. [34] Kuhlmeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems[J]. Soil Mechanics Foundation Division Journal, 1973, 99(5): 421-427. [35] Wegel R L, Walther H. Internal dissipation in solids for small cyclic strains[J]. Physics, 1935, 6(4): 141-157. [36] Ambrosini R D. Material damping vs. radiation damping in soil-structure interaction analysis[J]. Computers Geotechnics, 2006, 33(2): 86-92. [37] Masing G. Eigenspannungen und verfertigung bim messing proc 2nd int congress on applied mechanics[M]. Zurich, 1926. [38] Inc. I C G. FLAC3D manual[M]. [S. l. ]: Itasca Publisher Minneapolis, MN. 2009. [39] 王志佳. 土及岩石动力学参数的统计与分析[D]. 成都: 西南交通大学, 2012.Wang Z J. The statistical and analysis of dynamic parameters of soils and rocks[D]. Chengdu: Southwest Jiaotong University, 2012(in Chinese with English abstract). [40] Tabatabaiefar H R, Fatahi B. Idealisation of soil-structure system to determine inelastic seismic response of mid-rise building frames[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 339-351. [41] Semblat J F. Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media[J]. International Journal of Geomechanics, 2010, 11(6): 440-448. [42] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范: GB50007-2011[S]. 北京: 中国建筑工业出版社, 2011.Ministry of housing and urban rural development of People's Republic of China. Code for design of building foundation: GB50007-2011[S]. Beijing: China Construction Industry Press, 2011(in Chinese).