留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响

高运 徐若时 孙文静

高运, 徐若时, 孙文静. 考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响[J]. 地质科技通报, 2022, 41(2): 154-164. doi: 10.19509/j.cnki.dzkq.2022.0043
引用本文: 高运, 徐若时, 孙文静. 考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响[J]. 地质科技通报, 2022, 41(2): 154-164. doi: 10.19509/j.cnki.dzkq.2022.0043
Gao Yun, Xu Ruoshi, Sun Wenjing. Influence of bedrock depth on the seismic response of a nuclear reactor building foundation considering soil structure interaction[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 154-164. doi: 10.19509/j.cnki.dzkq.2022.0043
Citation: Gao Yun, Xu Ruoshi, Sun Wenjing. Influence of bedrock depth on the seismic response of a nuclear reactor building foundation considering soil structure interaction[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 154-164. doi: 10.19509/j.cnki.dzkq.2022.0043

考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响

doi: 10.19509/j.cnki.dzkq.2022.0043
详细信息
    作者简介:

    高运(1994—),男,现正攻读结构工程专业硕士学位,主要从事岩土工程方面工作。E-mail: 2014286859@qq.com

    通讯作者:

    徐若时(1988—),男,工程师,主要从事岩土工程方面工作。E-mail: ruoshi.xu@bgeeng.com

    孙文静(1981—),女,教授,主要从事岩土工程方面的工作。E-mail: wjsun@dhu.edu.cn

  • 中图分类号: TU435

Influence of bedrock depth on the seismic response of a nuclear reactor building foundation considering soil structure interaction

  • 摘要: 地震会对核电站安全造成影响。随着核电站的数量越来越多, 有必要关注在地震下核电站的安全。核反应堆厂房是核电站重要的组成部分, 研究其地震响应对核电站有着重要意义。基于直接法, 考虑了3种不同场地(中硬土、软岩、硬岩)在地震下的塑性变形和土的滞回阻尼, 使用FLAC3D对土-核反应堆厂房模型系统进行了三维建模。为了捕捉上部结构与下部岩石/土壤之间的分离与滑动, 在核反应堆厂房基础与岩石/土壤表面设置接触面单元。上层结构以集总质量模型模拟, 同时考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响, 最终得到核反应堆厂房结构杆件的加速度反应谱、剪力、基础的摇动和基础不均匀沉降以及侧向位移。结果表明: 在中硬土场地中, 位移、剪切力随基岩深度的增大而减小; 在硬岩场地中, 位移和剪切力响应的规律呈相反趋势; 在软岩场地中, 上部结构响应的规律较为复杂。对于基础摇动和基础不均匀沉降, 在中硬土场地中, 其呈现的规律随基岩深度增大而减小; 在软岩和硬岩场地中, 并无明显规律。基础不均匀沉降可直接反映结构的破坏情况。中硬土场地下基础不均匀沉降超过容许值, 所以基础不均匀沉降对核反应堆厂房的影响不容忽视, 这对核电站的安全设计十分重要。

     

  • 图 1  核反应堆厂房模型

    Figure 1.  Nuclear reactor building model

    图 2  1940年El Centro波

    Figure 2.  1940 El Centro wave

    图 3  基岩深度为30 m的土-结构模型

    Figure 3.  Soil structure model with a bedrock depth of 30 m

    图 4  岩石或土层的模量衰减曲线和相应的阻尼比曲线

    Figure 4.  Modulus attenuation curve and corresponding damping ratio curve of the rock/soil layer

    图 5  安全壳杆件顶点在小震及中硬土场地的加速度时程图

    Figure 5.  Acceleration time history diagram of the top of the containment member in the small earthquake and medium hard soil site

    图 6  中硬土场地不同基岩深度下35点和40点的加速度反应谱

    Figure 6.  Acceleration response spectra of point 35 and point 40 at different bedrock depths in the medium hard soil site

    图 7  软岩场地不同基岩深度下35点和40点的加速度反应谱

    Figure 7.  Acceleration response spectra of point 35 and point 40 at different bedrock depths in the soft rock site

    图 8  硬岩场地不同基岩深度下35点和40点的加速度反应谱

    Figure 8.  Acceleration response spectra of point 35 and point 40 at different bedrock depths in the hard rock site

    图 9  不同地震强度和基岩深度的核反应堆厂房模型杆件的剪切力

    Figure 9.  Shear force of model members of nuclear reactor buildings with different seismic intensities and bedrock depths

    图 10  不同深度的基础摇动时程图

    Figure 10.  Time history diagram of foundation rocking at different depths

    图 11  不同场地条件下不同基岩深度的基础不均匀沉降

    Figure 11.  Differential foundation settlement with different bedrock depths under different site conditions

    表  1  岩石或土壤参数

    Table  1.   Parameters of rock/soil

    参数 中硬土 软岩 硬岩
    剪切波速/(m·s-1) 390 600 849
    弹性模量/kPa 500 000 1 595 927 4 923 200
    密度/(kg·m-3) 2 400 1 731 2 350
    泊松比 0.25 0.28 0.36
    摩擦角/(°) 42 40 25
    黏聚力/kPa 120 5 30
    剪切模量/kPa 200 000 623 409 1 810 000
    体积模量/kPa 330 000 1 209 035 5 860 952
    资料来源 文献[28] 文献[29] 文献[30]
    下载: 导出CSV

    表  2  安全壳杆件的最大x向位移

    Table  2.   Maximum x-direction displacement of containment beam

    最大输入加速度/g 基岩深度/ m 中硬土 软岩 硬岩
    位移/mm
    0.3 15 2.36 2.54 1.71
    30 2.14 2.35 1.84
    45 2.07 2.30 1.84
    0.6 15 3.63 3.93 2.31
    30 3.28 3.68 2.57
    45 3.19 3.53 2.52
    0.9 15 4.54 4.99 2.61
    30 4.09 4.69 3.09
    45 3.97 4.67 3.06
    下载: 导出CSV

    表  3  设备杆件的最大x向位移

    Table  3.   Maximum x-direction displacement of the facility beam

    最大输入加速度/g 基岩深度/ m 中硬土 软岩 硬岩
    位移/mm
    0.3 15 2.04 1.83 1.47
    30 1.95 1.74 1.49
    45 1.86 1.62 1.54
    0.6 15 2.73 2.41 2.33
    30 2.52 2.25 2.34
    45 2.43 2.18 2.30
    0.9 15 3.11 3.05 3.17
    30 2.90 2.74 3.17
    45 2.90 2.76 3.20
    下载: 导出CSV
  • [1] 李永乐, 陈宇, 彭成山, 等. 地震作用下的灰坝液化特征及其动力稳定性分析: 以安阳电厂为例[J]. 地质科技情报, 2002, 21(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htm

    Li Y L, Chen Y, Peng C S, et al. Liquefied characters and dynamic stability of ash dam of the anyang power plant under the action of earthquake[J]. Geological Science and Technology Information, 2002, 21(1): 83-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htm
    [2] 王大伟, 刘震, 赵伟, 等. 砂泥岩互层油藏时移地震差异波形特征[J]. 地质科技情报, 2007, 26(4): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704021.htm

    Wang D W, Liu Z, Zhao W, et al. Characteristics of Time-Lapse Seismic Waveform for Sand-Mud Interbed[J]. Geological Science and Technology Information, 2007, 26(4): 107-110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200704021.htm
    [3] 杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517

    Yang L, Shi X Y, Chen Q, et al. Mechanism and laws of deterioration and damage of gneisses under cyclic loading[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517
    [4] 付鑫, 杜晓峰, 官大勇, 等. 地震沉积学在河流-浅水三角洲沉积相研究中的应用: 以渤海海域蓬莱A构造区馆陶组为例[J]. 地质科技通报, 2021, 40(3): 96-108. doi: 10.19509/j.cnki.dzkq.2021.0304

    Fu X, Du X F, Guan D Y, et al. Application of seismic sedimentology in reservoir prediction in fluvial to shallow water delta facies: A case study in Guantao Formation from the Penglai A structure area in Bohai Bay[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 96-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0304
    [5] 段谟东, 叶加仁, 吴景富, 等. 低勘探程度区域压力分布预测及超压形成机制: 以东海陆架盆地西湖凹陷为例[J]. 地质科技通报, 2020, 39(3): 129-139. doi: 10.19509/j.cnki.dzkq.2020.0314

    Duan M D, Ye J R, Wu J F, et al. Prediction of pressure distribution and formation mechanism in low exploration area: A case study of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 129-139(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0314
    [6] 中华人民共和国建设部. 核电厂抗震设计规范: GB50267-1997[S]. 北京: 中国计划出版社, 1997.

    Ministry of housing and urban rural development of the people's Republic of China. Code for seismic design of nuclear power plants: GB50267-1997[S]. Beijing: China Planning Press, 1997(in Chinese).
    [7] 高永武, 王涛, 戴君武, 等. 不同场地条件下某新型核电厂房的地震响应试验研究[J]. 振动与冲击, 2017, 36(18): 214-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718032.htm

    Gao Y W, Wang T, Dai J W, et al. Experimental research on seismic responses of a new type of nuclear power plant under different site conditions[J]. Journal of Vibration and Shock, 2017, 36(18): 214-222(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718032.htm
    [8] Ghosh B, Madabhushi S P G. Centrifuge modelling of seismic soil structure interaction effects[J]. Nuclear Engineering and Design, 2007, 237(8): 887-896.
    [9] 侯春林, 李小军. 不同输入界面对AP1000核岛结构设计地基地表地震动的影响[J]. 核动力工程, 2013, 34(2): 141-146, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302034.htm

    Hou C L, Li X J. Effects of seismic wave inputting interface on designed surface ground motion in AP1000 Nuclear Island Structure[J]. Nuclear Power Engineering, 2013, 34(2): 141-146, 152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302034.htm
    [10] 戴志军, 李小军, 侯春林. 场地硬夹层对核电厂结构地震响应的影响分析[J]. 应用基础与工程科学学报, 2019, 27(6): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906009.htm

    Dai Z J, Li X J, Hou C L. Influence analysis of hard interlayers in soil site on seismic response of the nuclear power plant structure[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1285-1293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906009.htm
    [11] 徐磊, 陈国兴. 地震基岩面选取对核岛场地地表地震反应影响[J]. 地震工程与工程振动, 2014, 34(6): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201406015.htm

    Xu L, Chen G X. Effects of the soil depth of seismic bedrock interface on ground surface seismic response of nuclear island site[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(6): 113-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201406015.htm
    [12] Li F R, Chen G X. Nonlinear seismic response characteristics of CAP1400 nuclear island structure on soft rock sites[J]. Science and Technology of Nuclear Installations, 2020, 2020: 1-17.
    [13] De Borbón F, Domizio M, Ambrosini D, et al. Influence of various parameters in the seismic soil-structure interaction response of a nuclear power plant[J]. Engineering Structures, 2020, 217: 110820.
    [14] 李培振, 吕西林, 陈波, 等. 均匀土-箱基-结构相互作用体系的计算分析[J]. 地震工程与工程振动, 2002, 22(5): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200205020.htm

    Li P Z, Lü X L, Chen B, et al. Computer analysis of soil-box foundation-structure dynamic interaction by ANSYS program[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(5): 115-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200205020.htm
    [15] Abell J A, Orbovi N, Mccallen D B, et al. Earthquake soil-structure interaction of nuclear power plants, differences in response to 3-D, 3×1-D, and 1-D excitations[J]. Earthquake Engineering Structural Dynamics, 2018, 47(6): 1478-1495.
    [16] 薄景山, 李秀领, 刘德东, 等. 土层结构对反应谱特征周期的影响[J]. 地震工程与工程振动, 2003, 23(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200305007.htm

    Bo J S, Li X L, Liu D D, et al. Effects of soil layer construction on characteristic periods of response spectra[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(5): 42-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200305007.htm
    [17] 王国新, 黄坤朋. 表层土结构对地表地震动的影响研究[J]. 地震工程与工程振动, 2013, 33(5): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201305005.htm

    Wang G X, Huang K P. Effects of surface soil on ground motion characters[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(5): 33-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201305005.htm
    [18] 来春景, 朱彦鹏, 王春青, 等. 黄土高填方场地地震动参数特性分析[J]. 地震工程学报, 2018, 40(6): 1168-1173, 1223. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201806004.htm

    Lai J C, Zhu Y P, Wang C Q, et al. Characteristics of ground motion parameters of loess-high filling sites[J]. China Earthquake Engineeing Journal, 2018, 40(6): 1168-1173, 1223(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201806004.htm
    [19] Hokmabadi A S, Fatahi B, Samali B. Seismic response of mid-rise buildings on shallow and end-bearing pile foundations in soft soil[J]. Soils and Foundations, 2014, 54(3): 345-363.
    [20] Hokmabadi A S, Fatahi B, Samali B. Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations[J]. Computers and Geotechnics, 2014, 55: 172-186.
    [21] Reza-Tabatabaiefar S H, Fatahi B, Samali B. Seismic behavior of building frames considering dynamic soil-structure interaction[J]. International Journal of Geomechanics, 2013, 13(4): 409-420.
    [22] 李忠献, 李忠诚, 沈望霞. 核反应堆厂房结构楼层反应谱的敏感性分析[J]. 核动力工程, 2005, 26(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200501009.htm

    Li Z X, Li Z C, Shen W X. Sensitivity analysis for floor response spectra of nuclear reactor buildings[J]. Nuclear Power Engineering, 2005, 26(1): 44-50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200501009.htm
    [23] 朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm

    Zhu S D, Chen G X, Jiang P C, et al. 3D nonlinear response characteristics of the pile-raft-supported Ap1000 nuclear island building in soft deposits subjected to strong ground motions[J]. Engineering Mechanics, 2021, 38(1): 129-142(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm
    [24] Commission U N R. Regulatory guide 1.61: Damping values for seismic design of nuclear power plants[M]. [S. l. ]: US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2007.
    [25] He W, Liu W, Yang Q, et al. Study on dynamic response of large and small aspect ratio isolated buildings[J]. The Structural Design of Tall Special Buildings, 2014, 23(17): 1329-1344.
    [26] Liu W, Xu H, He W, et al. Static test and seismic dynamic response of an innovative 3D seismic isolation system[J]. Journal of Structural Engineering, 2018, 144(12): 04018212.
    [27] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB50011-2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of housing and urban rural development of People's Republic of China. Code for seismic design of buildings: GB50011-2010[S]. Beijng: China Construction Industry Press, 2010(in Chinese).
    [28] Bertuzzi R. Sydney sandstone and shale parameters for tunnel design[J]. Australian Geomechanics, 2014, 49(1): 1-40. http://www.researchgate.net/publication/293078066_Sydney_sandstone_and_shale_parameters_for_tunnel_design/download
    [29] Reza-Tabatabaiefar S H, Fatahi B, Samali B. Seismic behavior of building frames considering dynamic soil-structure interaction[J]. International Journal of Geomechanics, 2013, 13(4): 409-420.
    [30] Lin F, Tang H. Nuclear containment structure subjected to commercial aircraft crash and subsequent vibrations and fire[J]. Nuclear Engineering and Design, 2017, 322: 68-80.
    [31] Kramer S L. Geotechnical earthquake engineering[M]. [S. l. ]: Pearson Education India, 1996.
    [32] Conniff D E, Kiousis P D. Elastoplastic medium for foundation settlements and monotonic soil-structure interaction under combined loadings[J]. International Journal for Numerical Analytical Methods in Geomechanics, 2007, 31(6): 789-807.
    [33] Rayhani M, El Naggar M H. Numerical modeling of seismic response of rigid foundation on soft soil[J]. International Journal of Geomechanics, 2008, 8(6): 336-346.
    [34] Kuhlmeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems[J]. Soil Mechanics Foundation Division Journal, 1973, 99(5): 421-427.
    [35] Wegel R L, Walther H. Internal dissipation in solids for small cyclic strains[J]. Physics, 1935, 6(4): 141-157.
    [36] Ambrosini R D. Material damping vs. radiation damping in soil-structure interaction analysis[J]. Computers Geotechnics, 2006, 33(2): 86-92.
    [37] Masing G. Eigenspannungen und verfertigung bim messing proc 2nd int congress on applied mechanics[M]. Zurich, 1926.
    [38] Inc. I C G. FLAC3D manual[M]. [S. l. ]: Itasca Publisher Minneapolis, MN. 2009.
    [39] 王志佳. 土及岩石动力学参数的统计与分析[D]. 成都: 西南交通大学, 2012.

    Wang Z J. The statistical and analysis of dynamic parameters of soils and rocks[D]. Chengdu: Southwest Jiaotong University, 2012(in Chinese with English abstract).
    [40] Tabatabaiefar H R, Fatahi B. Idealisation of soil-structure system to determine inelastic seismic response of mid-rise building frames[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 339-351.
    [41] Semblat J F. Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media[J]. International Journal of Geomechanics, 2010, 11(6): 440-448.
    [42] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范: GB50007-2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of housing and urban rural development of People's Republic of China. Code for design of building foundation: GB50007-2011[S]. Beijing: China Construction Industry Press, 2011(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  683
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10

目录

    /

    返回文章
    返回