留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理模型试验的杆塔基础滑坡防护措施效果研究

李思德 李远耀 殷坤龙 钟源 刘毅 许艺林

李思德, 李远耀, 殷坤龙, 钟源, 刘毅, 许艺林. 基于物理模型试验的杆塔基础滑坡防护措施效果研究[J]. 地质科技通报, 2022, 41(2): 209-218. doi: 10.19509/j.cnki.dzkq.2022.0044
引用本文: 李思德, 李远耀, 殷坤龙, 钟源, 刘毅, 许艺林. 基于物理模型试验的杆塔基础滑坡防护措施效果研究[J]. 地质科技通报, 2022, 41(2): 209-218. doi: 10.19509/j.cnki.dzkq.2022.0044
Li Side, Li Yuanyao, Yin Kunlong, Zhong Yuan, Liu Yi, Xu Yilin. Study on the effect of tower foundation landslide protection measures based on a physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 209-218. doi: 10.19509/j.cnki.dzkq.2022.0044
Citation: Li Side, Li Yuanyao, Yin Kunlong, Zhong Yuan, Liu Yi, Xu Yilin. Study on the effect of tower foundation landslide protection measures based on a physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 209-218. doi: 10.19509/j.cnki.dzkq.2022.0044

基于物理模型试验的杆塔基础滑坡防护措施效果研究

doi: 10.19509/j.cnki.dzkq.2022.0044
基金项目: 

国家重点研发计划项目 2018YFC0809402

详细信息
    作者简介:

    李思德(1997—), 男, 现正攻读地质工程专业硕士学位, 主要从事滑坡地质灾害预测预报及评估方面的研究工作。E-mail: 3227180571@qq.com

    通讯作者:

    李远耀(1978—), 男, 副研究员, 主要从事地质灾害机理与风险分析方面的研究和教学工作。E-mail: liyuanyao2004@163.com

  • 中图分类号: P642.22

Study on the effect of tower foundation landslide protection measures based on a physical model test

  • 摘要: 大量穿越山地丘陵区的高压输电线路杆塔基础常位于滑坡灾害高易发斜坡地段, 施加适当防护措施提高其稳定性, 是保障输电线路持续安全运行的关键。为研究不同防护措施对杆塔基础滑坡的防护效果, 以湖北省巴东县燕子滑坡为地质原型, 设计制作物理试验模型, 分别开展了极端降雨条件下滑坡在无防护、施加抗滑桩与格构护坡时的物理模型试验, 从试验角度揭示了滑坡变形破坏特征与不同防护措施的防护效果。试验结果表明: 在2种极端降雨工况(50, 100 mm/h)下, 无防护的滑坡体历经了坡表冲刷、裂缝扩展、局部垮塌变形与整体滑动的演化过程; 抗滑桩措施对滑坡整体的防护效果显著, 滑坡整体处于稳定状态, 杆塔基础变形较小, 杆塔倾斜率满足规范, 但坡表会出现冲刷垮塌现象; 格构护坡措施能有效减少坡面冲刷和坡脚垮塌风险, 但在持续强降雨条件下对杆塔基础的整体稳固作用稍弱。物理模型试验结果与滑坡历史变形和实际治理效果吻合, 试验结论可为类似杆塔基础滑坡的破坏机理研究与防护工程设计提供借鉴。

     

  • 图 1  燕子滑坡工程地质剖面图

    Figure 1.  Engineering geological section of the Yanzi landslide

    图 2  模型试验系统照片

    Figure 2.  Photographs of model test system

    图 3  相似杆塔模型

    Figure 3.  Similar tower model

    图 4  杆塔模型埋设照片

    Figure 4.  Photo of the buried tower model

    图 5  抗滑桩防护试验布置图(图中数值单位:cm)

    Figure 5.  Layout of anti-slide pile protection test

    图 6  格构护坡试验布置图(图中数值单位: cm)

    Figure 6.  layout of the lattice slope protection test

    图 7  第二次降雨过程坡体照片

    Figure 7.  Slope photos during the second rainfall

    图 8  坡体滑动后裂缝照片

    Figure 8.  Photos of cracks after slope sliding

    图 9  无防护试验坡体应力变化曲线图

    Figure 9.  Curve diagram of the stress variation of the slope without the protection test

    图 10  抗滑桩防护试验前后坡体照片

    Figure 10.  Photographs of the slope before and after the anti-slide pile protection test

    图 11  抗滑桩防护试验各监测点监测结果曲线

    a.孔隙水压力变化曲线;b.土压力变化曲线;c.应变变化曲线;d.杆塔倾斜度变化曲线

    Figure 11.  Monitoring results curve of each monitoring point in the anti-slide pile protection test

    图 12  格构护坡试验前后坡体照片

    Figure 12.  Photos of the slope before and after the lattice protection test

    图 13  格构护坡试验各监测点监测结果曲线

    a.孔隙水压力变化曲线;b.土压力变化曲线;c.应变变化曲线;d.杆塔倾斜度变化曲线

    Figure 13.  Curve of the monitoring results of each monitoring point in the lattice protection test

    图 14  杆塔倾斜率变化曲线(上角标2,3表示工况2和工况3,同表 2)

    Figure 14.  Variation curve of tower inclination rate

    表  1  滑坡原型及相似材料物理力学参数

    Table  1.   Physical and mechanical parameters of the landslide prototype and similar materials

    模型部位 材料组成及质量配比 天然密度ρ/(g·cm-3) 相似比1∶1 渗透系数k/(cm·s) 相似比 $1:\sqrt {300} $ 黏聚力c/kPa相似比1∶300 内摩擦角φ/(°) 相似比1∶1
    滑体(原型) 粉质黏土夹碎石 1.76 3.66×10-4 25.80 23.8
    滑体(相似材料) 滑体土(含碎石):河砂∶膨润土∶水= 10∶10∶3∶4 1.77 2.15×10-5 6.80 23.7
    滑带(原型) 粉质黏土 1.95 4.67 21.3
    滑带(相似材料) 玻璃珠∶膨润土∶水=15∶5∶2 1.96 0.20 21.0
    下载: 导出CSV

    表  2  试验工况设计

    Table  2.   Design of test conditions

    工况 防护措施 降雨情况
    1 无防护 50 mm/h降雨4 h静置2 h;100 mm/h降雨4 h,静置2 h
    2 抗滑桩 50 mm/h降雨4 h静置2 h;100 mm/h降雨4 h,静置2 h
    3 格构护坡加排水沟 50 mm/h降雨4 h静置2 h;100 mm/h降雨4 h,静置2 h
    下载: 导出CSV

    表  3  杆塔地基变形允许值

    Table  3.   Allowable values of pole tower foundation deformation

    杆塔总高度/m [0, 50) [50, 100) [100, 150) [150, 200) [200, 250) [250, 300]
    最大倾斜率 0.006 0.005 0.004 0.003 0.002 0.0015
    注:倾斜率值为基础倾斜方向两端点的沉降差与其距离的比值
    下载: 导出CSV
  • [1] 冯德泉. 架空输电线路杆塔基础滑坡处理及分析[J]. 华东科技: 学术版, 2017, 6(3): 231.

    Feng D Q. Treatment and analysis of tower foundation landslide of overhead transmission line[J]. East China Science & Technology, 2017, 6(3): 231(in Chinese with English abstract).
    [2] 黄晨忱, 殷坤龙, 梁鑫, 等. 极端工况下滑坡区超高压输电线路杆塔基础失稳评估分析[J]. 安全与环境工程, 2021, 28(4): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104020.htm

    Huang C C, Yin K L, Liang X, et al. Analysis of landslide deformation under extreme conditions and its influence on the foundations of UHV transmission lines[J]. Safety and Environmental Engineering, 2021, 28(4): 139-147(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104020.htm
    [3] 刘丙财, 焦春茂, 梁健伟, 等. 500 kV鹏深线杆塔基础边坡稳定性综合评估研究[J]. 工程技术研究, 2019, 4(14): 1-5. doi: 10.3969/j.issn.1671-3818.2019.14.001

    Liu B C, Jiao C M, Liang J W, et al. Study on comprehensive evaluation of tower foundation and slope stability for 500 kV Peng -Shen transmission line[J]. Engineering and Technological Research, 2019, 4(14): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1671-3818.2019.14.001
    [4] 俞伟勇, 吴朝峰, 戴建华, 等. 山区输电线路杆塔边坡防护方案选择及应用[J]. 电力勘测设计, 2020, 24(6): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC202006013.htm

    Yu W Y, Wu C F, Dai J H, et al. Selection and application of slope protection scheme for transmission line tower in mountainous area[J]. Electric Power Survey & Design, 2020, 24(6): 67-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC202006013.htm
    [5] Tang H M, Hu X L, Xu C, et al. A novel approach for determining landslide pushing force based on landslide-pile interactions[J]. Engineering Geology, 2014, 182: 15-24. doi: 10.1016/j.enggeo.2014.07.024
    [6] Richard M I. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology, 2015, 244(S1): 9-20.
    [7] 任伟中, 陈浩. 滑坡变形破坏机理和整治工程的模型试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2136-2141. doi: 10.3321/j.issn:1000-6915.2005.12.022

    Ren W Z, Chen H. Model testing research on deformation and fracture mechanism of landslide and its harnessing engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2136-2141(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.12.022
    [8] 杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J/OL]. 地质科技通报, 2022: 1-9. doi: 10.19509/j.cnki.dzkq.2021.0069.

    Yang D F, Hu X L, Xu C, et al. Deformation evolution characteristics of multilayer landslide based on physical model test[J/OL]. Bulletin of Geological Science and Technology, 2022: 1-9[2022-01-18]. doi: 10.19509/j.cnki.dzkq.2021.0069 (in Chinese with English abstract)
    [9] 王旋, 胡新丽, 周昌, 等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报, 2020, 39(4): 103-108. doi: 10.19509/j.cnki.dzkq.2020.0413

    Wang X, Hu X L, Zhou C, et al. Model test on the displacement field characteristics of the landslide stabilizing piles[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0413
    [10] 马俊伟, 唐辉明, 胡新丽, 等. 抗滑桩加固斜坡坡面位移场特征及演化模型试验研究[J]. 岩石力学与工程学报, 2014, 33(4): 679-690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404004.htm

    Ma J W, Tang H M, Hu X L, et al. Model test study of surface displacement field of slope stabilized with anti sliding piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 679-690(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404004.htm
    [11] Li C D, Wu J J, Tang H M, et al. Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock[J]. Engineering Geology, 2016, 204: 65-76. doi: 10.1016/j.enggeo.2016.02.002
    [12] 魏作安, 李世海, 赵颖. 底端嵌固桩与滑体相互作用的物理模型试验研究[J]. 岩土力学, 2009, 30(8): 2259-2263. doi: 10.3969/j.issn.1000-7598.2009.08.010

    Wei Z A, Li S H, Zhao Y. Model study of interaction mechanism between anti-sliding piles and landslide[J]. Rock and Soil Mechanics, 2009, 30(8): 2259-2263(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.08.010
    [13] 张杰豪, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带堆积层滑坡-抗滑桩受力特征[J]. 地质科技通报, 2021, 40(4): 171-178. doi: 10.19509/j.cnki.dzkq.2021.0410

    Zhang J H, Hu X L, Xu C, et al. Mechanical characteristics of anti-slide pile of multi-layer sliding zone accumulation layer based on physical model test. [J]. Bulletin of Geological Science and Technology, 2021, 40(4): 171-178(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0410
    [14] 高长胜. 边坡变形破坏及抗滑桩与土体相互作用研究[D]. 南京: 南京水利科学研究院, 2007.

    Gao C S. Study on slope deformation and interaction between reinforced piles and soils[D]. Nanjing: Geotechnical Engineering of Nanjing Institute of Hydraulic Research, 2007(in Chinese with English abstract).
    [15] 韩冬冬, 胡兆江. 格构锚固作用下滑坡应力分布试验研究[J]. 科技创新与应用, 2021, 11(13): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202113015.htm

    Han D D, Hu Z J. An experimental study on the stress distribution of a landslide under the action of lattice structure anchoring[J]. Technology Innovation and Application, 2021, 11(13): 54-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202113015.htm
    [16] 雷晓锋, 汪班桥, 李楠. 格构梁锚杆加固滑坡地震动力响应分析[J]. 水文地质工程地质, 2020, 47(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202001011.htm

    Lei X F, Wang B Q, Li N. A study of the seismic response of landslide to the anchor lattice beam[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 89-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202001011.htm
    [17] 陈春利, 殷跃平, 门玉明, 等. 全长黏结注浆格构锚固工程模型试验研究[J]. 岩石力学与工程学报, 2017, 36(4): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704012.htm

    Chen C L, Yin Y P, Men Y M, et al. Model test on fully grouted lattice beam anchorage[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 881-889(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704012.htm
    [18] 罗先启, 刘德富, 张振华, 等. 滑坡模型试验理论及其应用[Z]. 上海: 上海交通大学, 2006.

    Luo X Q, Liu D F, Zhang Z H, et al. The theory and application of landslide model test[Z]. Shanghai: Shanghai Jiaotong University, 2006(in Chinese).
    [19] 罗先启. 滑坡模型试验理论及其应用[D]. 上海: 上海交通大学, 2008.

    Luo X Q. The theory and application of landslide model test[D]. Shanghai: Shanghai Jiaotong University, 2008(in Chinese with English abstract).
    [20] 曹玲, 罗先启, 程圣国. 千将坪滑坡物理模型试验相似材料研究[J]. 三峡大学学报: 自然科学版, 2007, 29(1): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm

    Cao L, Luo X Q, Chen S G. Research on similar material of physical model for Qianjiangping landslide[J]. Journal of China Three Gorges University: Natural Sciences Edition, 2007, 29(1): 37-39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm
    [21] 徐楚, 胡新丽, 何春灿, 等. 水库型滑坡模型试验相似材料的研制及应用[J]. 岩土力学, 2018, 39(11): 4287-4293. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811046.htm

    Xu C, Hu X L, He C C, et al. Development and application of similar material for reservoir landslide model test[J]. Rock and Soil Mechanics, 2018, 39(11): 4287-4293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811046.htm
    [22] 肖捷夫, 李云安, 蔡浚明. 水位涨落作用下藕塘滑坡响应特征模型试验研究[J]. 工程地质学报, 2020, 28(5): 1049-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005014.htm

    Xiao J F, Li Y A, Cai J M. Model test research on response characteristics of outang landslide under water level fluctuation[J]. Journal of Engineering Geology, 2020, 28(5): 1049-1056(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005014.htm
    [23] Wang H F, Cheng Y P, Yuan L, et al. Similarity model tests of movement and deformation of coal-rock mass below stopes[J]. Mining Science and Technology, 2010, 20(2): 188-192.
    [24] Jian W X, Xu Q, Yang H F, et al. Mechanism and failure process of Qianjiangping landslide in the Three Gorges Reservoir, China[J]. Environmental Earth Sciences, 2014, 72(8): 2999-3013.
    [25] Hu X L, Tang H M, Li C D, et al. Stability of Huangtupo riverside slumping mass Ⅱ# under water level fluctuation of Three Gorges Reservoir[J]. Journal of Earth Science, 2012, 23(3): 326-334.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  372
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12

目录

    /

    返回文章
    返回