留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同环剪条件下三峡库区童家坪滑坡滑带土强度特性

赵帆程 苗发盛 吴益平 薛阳 孟佳佳

赵帆程, 苗发盛, 吴益平, 薛阳, 孟佳佳. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性[J]. 地质科技通报, 2022, 41(2): 315-324. doi: 10.19509/j.cnki.dzkq.2022.0045
引用本文: 赵帆程, 苗发盛, 吴益平, 薛阳, 孟佳佳. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性[J]. 地质科技通报, 2022, 41(2): 315-324. doi: 10.19509/j.cnki.dzkq.2022.0045
Zhao Fancheng, Miao Fasheng, Wu Yiping, Xue Yang, Meng Jiajia. Strength characteristics of slip zone soils of the Tongjiaping landslide in the Three Gorges Reservoir area under different ring shear conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 315-324. doi: 10.19509/j.cnki.dzkq.2022.0045
Citation: Zhao Fancheng, Miao Fasheng, Wu Yiping, Xue Yang, Meng Jiajia. Strength characteristics of slip zone soils of the Tongjiaping landslide in the Three Gorges Reservoir area under different ring shear conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 315-324. doi: 10.19509/j.cnki.dzkq.2022.0045

不同环剪条件下三峡库区童家坪滑坡滑带土强度特性

doi: 10.19509/j.cnki.dzkq.2022.0045
基金项目: 

国家自然科学基金资助项目 42007267

国家自然科学基金资助项目 41977244

国家重点研发计划项目 2017YFC1501301

详细信息
    作者简介:

    赵帆程(1997-), 男, 现正攻读资源与环境专业硕士学位, 主要从事岩土体性质与工程安全研究。E-mail: zhaofancheng@cug.edu.cn

    通讯作者:

    苗发盛(1989-), 男, 副教授, 主要从事地质灾害预测预报与岩土力学特性研究工作。E-mail: fsmiao@cug.edu.cn

  • 中图分类号: P642.22

Strength characteristics of slip zone soils of the Tongjiaping landslide in the Three Gorges Reservoir area under different ring shear conditions

  • 摘要: 研究不同环剪条件下库岸堆积层滑坡滑带土强度特性对滑坡稳定性评价具有重要意义。针对目前在库岸堆积层滑坡滑带土力学特性方面研究薄弱的问题, 以三峡库区童家坪滑坡滑带土为研究对象, 采用ARS-E2环剪仪开展了不同剪切速率下的剪切试验, 研究了等速剪切、加速剪切以及减速剪切作用下滑带土强度变化特征。试验结果表明: 滑带土试样在恒定的低速剪切条件下更容易得到稳定的残余强度, 并且达到峰值强度后易出现"应变软化"现象; 在相同剪切应力条件下, 滑带土加速环剪和减速环剪的剪应力变化趋势基本一致, 与法向应力均呈正相关关系; 剪切速率的变化会显著影响滑带土峰值黏聚力的大小。研究成果揭示了不同环剪条件下滑带土力学特性, 可以为揭示库岸堆积层滑坡变形破坏的力学机制提供理论依据。

     

  • 图 1  童家坪滑坡平面图(a)及其变形特征(b~e)

    Figure 1.  Plane of the Tongjiaping landslide (a) and its deformation characteristic (b-e)

    图 2  童家坪滑坡1-1′剖面图

    Figure 2.  1-1′ profile of the Tongjiaping landslide

    图 3  ARS-E2型全自动闭合回路控制环剪仪

    Figure 3.  Fully automatic ring-shear apparatus(ARS-E2)

    图 4  滑带土颗粒分析曲线

    Figure 4.  Gradation curve of the soil sample on the sliding surface

    图 5  剪切完成后部分滑带土试样

    Figure 5.  Part of slip zone soil samples after the shearing test

    图 6  等速环剪的τ-s曲线

    Figure 6.  τ-s curves of ring shear at constant velocity

    图 7  等速环剪峰值强度-剪切速率关系

    Figure 7.  Relationship between peak strength and shear rate in constant velocity ring shear

    图 8  中部土样变速环剪τ-t曲线

    Figure 8.  τ-t curves of ring shear at variable speed for the middle soil sample

    图 9  后缘土样变速环剪τ-t曲线

    Figure 9.  τ-t curves of ring shear at variable speed for the rear soil sample

    图 10  变速环剪下滑带土峰值强度包线

    Figure 10.  Peak strength envelope of slip zone soil with variable speed ring shear

    表  1  滑带土基本物理力学性质指标

    Table  1.   Basic physical and mechanical property indexes of the slip zone soil

    取样位置 天然含水率/% 饱和含水率/% 天然干密度/(g·cm-3) 相对密度 液限/% 塑限/%
    中部 19.58 29.43 1.51 2.72 28.85 17.81
    后缘 20.14 27.51 1.56 2.70 28.42 16.33
    下载: 导出CSV

    表  2  滑带土环剪试验方案

    Table  2.   Scheme of the ring shear test for slip zone soil

    环剪方法 试样编号 有效法向应力/kPa 剪切速率/(mm·min-1) 滑带土位置
    等速环剪 HJ1-(1, 2, 3, 4, 5) 200 0.06, 0.6, 2, 6, 10 滑坡中部
    HJ2-(1, 2, 3, 4, 5) 滑坡后缘
    变速环剪 HJ3-(1, 2, 3) 50, 100, 200 0.02~15(加速) 滑坡中部
    HJ3-(4, 5, 6) 15~0.02(减速)
    HJ4-(1, 2) 50, 100 0.06~30(加速) 滑坡后缘
    HJ4-(3, 4) 30~0.06(减速)
    下载: 导出CSV

    表  3  等速环剪试验滑带土峰值强度特征

    Table  3.   Peak strength characteristics of slip zone soil of ring shear at constant velocity

    中部滑带土 后缘滑带土
    剪切速率/(mm·min-1) 峰值强度/kPa 达到峰值强度最小位移/mm 剪切速率/(mm·min-1) 峰值强度/kPa 达到峰值强度最小位移/mm
    0.06 106.73 32.94 0.06 112.88 8.17
    0.60 98.07 68.88 0.60 117.33 6.85
    2.00 107.30 217.30 2.00 105.18 273.68
    6.00 104.56 556.42 6.00 115.50 123.30
    10.00 90.92 130.09 10.00 104.32 334.38
    下载: 导出CSV

    表  4  变速环剪试验滑带土峰值强度特征参数

    Table  4.   Strength characteristic parameters of slip zone soilof ring shear at constant velocity

    试验条件 法向应力/kPa 强度参数
    50 100 200 φp/(°) cp/kPa
    峰位强度/kPa
    中部加速 32.06 62.22 111.61 27.92 7.37
    中部减速 24.24 61.02 104.45 27.47 2.53
    后缘加速 56.85 82.84 / 27.46 30.86
    后缘减速 54.95 81.72 / 28.37 28.18
    下载: 导出CSV
  • [1] Tang H, Li C, Hu X, et al. Evolution characteristics of theHuangtupo landslide based on in situ tunneling and monitoring[J]. Landslides, 2015, 12: 511-521. doi: 10.1007/s10346-014-0500-2
    [2] 贺可强, 王荣鲁, 李新志, 等. 堆积层滑坡的地下水加卸载动力作用规律及其位移动力学预测: 以三峡库区八字门滑坡分析为例[J]. 岩石力学与工程学报, 2008, 27(8): 1644-1651. doi: 10.3321/j.issn:1000-6915.2008.08.014

    He K Q, Wang R L, Li X Z, et al. Load-unload dynamic law of groundwater level and dynamic displacement prediction of debris landslide: A case study of Bazimen landslide in Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1644-1651(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.08.014
    [3] 殷跃平, 闫国强, 黄波林, 等. 三峡水库消落带斜坡岩体劣化过程地质强度指标研究[J]. 水利学报, 2020, 51(8): 883-896. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008001.htm

    Yin Y P, Yan G Q, Huang B L, et al. Geological strength index of the slope rock mass deterioration process of the hydro-fluctuation belt in the Three Gorges Reservoir, China[J]. Journal of Hydraulic Engineering, 2020, 51(8): 883-896(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008001.htm
    [4] 殷坤龙, 汪洋, 唐仲华. 降雨对滑坡的作用机理及动态模拟研究[J]. 地质科技情报, 2002, 21(1): 75-78. doi: 10.3969/j.issn.1000-7849.2002.01.017

    Yin K L, Wang Y, Tang Z H. Mechanism and dynamic simulation of landslide by precipitation[J]. Geological Science and Technology Information, 2002, 21(1): 75-78(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2002.01.017
    [5] 汤罗圣, 殷坤龙, 刘艺梁, 等. 万州区典型堆积层滑坡滑带土抗剪强度参数间关系研究[J]. 地质科技情报, 2013, 32(6): 191-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306030.htm

    Tang L S, Yin K L, Liu Y L, et al. Relationship between shear strength parameters of typical accumulational landslides slip soil in Wanzhou district[J]. Geological Science and Technology Information, 2013, 32(6): 191-195(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306030.htm
    [6] Liao K, Wu Y, Miao F, et al. Effect of weakening of sliding zone soils in hydro-fluctuation belt on long-term reliability of reservoir landslides[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(5): 3801-3815. doi: 10.1007/s10064-021-02167-9
    [7] 刘小丽, 邓建辉, 李广涛. 滑带土强度特性研究现状[J]. 岩土力学, 2004, 25(11): 1849-1854. doi: 10.3969/j.issn.1000-7598.2004.11.037

    Liu X L, Deng J H, Li G T. Shear strength properties of slip soils of landslides: An overview[J]. Rock and Soil Mechanics, 2004, 25(11): 1849-1854(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2004.11.037
    [8] 刘虎虎, 缪海波, 陈志伟, 等. 含水率和离子浓度对滑带土抗剪强度的影响[J]. 地质科技情报, 2019, 38(1): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901025.htm

    Liu H H, Miu H B, Chen Z W, et al. Effect of water content and ion concentration on shear strength of sliding zone soil[J]. Geological Science and Technology Information, 2019, 38(1): 228-234(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901025.htm
    [9] Tan Q, Tang H, Fan L, et al. In situ triaxial creep test for investigating deformational properties of gravelly sliding zone soil: example of the Huangtupo 1# landslide, China[J]. Landslides, 2018, 15(12): 2499-2508. doi: 10.1007/s10346-018-1062-5
    [10] 张迪, 李岚星, 胡新丽, 等. 长期静水浸泡对三峡库区滑带土物理-化学-力学性质的影响[J]. 地质科技通报, 2021, 40(5): 281-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105029.htm

    Zhang D, Li L X, Hu X L, et al. Effect of long-term immersion in static water on the physical, chemical, and mechanical properties of sliding zone soil in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 281-289(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105029.htm
    [11] 周翠英, 牟春梅. 软土破裂面的微观结构特征与强度的关系[J]. 岩土工程学报, 2005, 27(10): 1136-1141. doi: 10.3321/j.issn:1000-4548.2005.10.005

    Zhou C Y, Mou C M. Relationship between micro-structural characters of fracture surface and strength of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1136-1141(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2005.10.005
    [12] Miao F, Wu Y, Li L, et al. Weakening laws of slip zone soils during wetting-drying cycles based on fractal theory: A case study in the Three Gorges Reservoir(China)[J]. Acta Geotechnica, 2020, 15(7): 1909-1923. doi: 10.1007/s11440-019-00894-8
    [13] Skempton A. Residual strength of clays in landslides, folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18. doi: 10.1680/geot.1985.35.1.3
    [14] Gratchev I, Sassa K. Shear strength of clay at different shear rates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(5): 06015002. doi: 10.1061/(ASCE)GT.1943-5606.0001297
    [15] 杨俊, 黎新春, 张国栋, 等. 不同剪切速率对风化砂改良膨胀土抗剪强度指标的影响[J]. 地质科技情报, 2014, 33(1): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401029.htm

    Zhang J, Li X C, Zhang G D, et al. The impacts of different shear rate on the anti-shear strength index of weathering improved expansive soil[J]. Geological Science and Technology Information, 2014, 33(1): 185-190(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401029.htm
    [16] 吴月旭, 林彤, 杨闯. 不同条件下巴东三中滑坡滑带土大型三轴试验分析[J]. 地质科技情报, 2017, 36(3): 225-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703031.htm

    Wu Y X, Lin T, Yang C. Analysis of large scale triaxial experiment of sliding zone soil inSanzhong Badong under different conditions[J]. Geological Science and Technology Information, 2017, 36(3): 225-229(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703031.htm
    [17] 黄维, 孙畅, 项伟, 等. 融雪条件下新疆伊犁谷地黄土-卵砾石接触面残余强度[J]. 地质科技通报, 2020, 39(6): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006012.htm

    Huang W, Sun C, Xiang W, et al. Residual strength of loess-gravel interface under snowmelt inili valley, Xinjiang[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 112-120(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006012.htm
    [18] 蒋树, 王义锋, 唐川, 等. 基于环剪试验的复活型低速滑坡活动机理[J]. 地质科技情报, 2019, 38(2): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902030.htm

    Jiang S, Wang Y F, Tang C, et al. Movement mechanism of a reactivated slow-moving landslide based on ring shear test[J]. Geological Science and Technology Information, 2019, 38(2): 256-261(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902030.htm
    [19] 黄宏翔, 陈育民, 王建平, 等. 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39(6): 2082-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm

    Huang H X, Chen Y M, Wang J P, et al. Ring shear tests on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(6): 2082-2088(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm
    [20] Li Y, Wen B, Aydin A, et al. Ring shear tests on slip zone soils of three giant landslides in the Three Gorges Project area[J]. Engineering Geology, 2013, 154: 106-115. doi: 10.1016/j.enggeo.2012.12.015
    [21] Motoyuki S, Nguyen V, Takuya Y. Ring shear characteristics of discontinuous plane[J]. Soils and Foundations, 2017, 57(1): 1-22. doi: 10.1016/j.sandf.2017.01.001
    [22] 范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm

    Fan Z Q, Tang H M, Tan Q W, et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm
    [23] 王顺, 项伟, 崔德山, 等. 不同环剪方式下滑带土残余强度试验研究[J]. 岩土力学, 2012, 33(10): 2967-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm

    Wang S, Xiang W, Cui D S, et al. Study of residual strength of slide zone soil under different ring-shear tests[J]. Rock and Soil Mechanics, 2012, 33(10): 2967-2972(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm
    [24] Liao J, W Y, Ou G, et al. Shear strength behavior of slide zone soil in ring shear tests[J]. Journal of Wuhan University of Technology, 2013, 35(10): 92-95
    [25] Duong N, Suzuki M, Hai N. Rate and acceleration effects on residual strength of kaolin and kaolin-bentonite mixtures in ring shearing[J]. Soils and Foundations -Tokyo, 2018, 58(5): 1153-1172. doi: 10.1016/j.sandf.2018.05.011
    [26] Bhat D, Yatabe R, Bhandary N. Study of preexisting shear surfaces of reactivated landslides from a strength recovery perspective[J]. Journal of Asian Earth Sciences, 2013, 77(15): 243-253.
    [27] 卢操, 晏鄂川, 张瑜, 等. 降雨作用下青石镇政府后山堆积层滑坡渗流与稳定性[J]. 地质科技通报, 2020, 39(2): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002016.htm

    Lu C, Yan E C, Zhang Y, et al. Seepage and stability of the colluvial landslide on the back hill of Qingshi Town Government under rainfall[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 139-147(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002016.htm
    [28] 孙一清, 李德营, 殷坤龙, 等. 三峡库区堆积层滑坡间歇性活动预测: 以白水河滑坡为例[J]. 地质科技情报, 2019, 38(5): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905021.htm

    Sun Y Q, Li D Y, Yin K L, et al. Intermittent movement prediction of colluvial landslide in the Three Gorges Reservoir: A study of Baishuihe landslide[J]. Geological Science and Technology Information, 2019, 38(5): 195-203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905021.htm
    [29] Zhou Z, Shen J, Tang S, et al. Analysis of weakening law and stability of sliding zone soil in thrust-load-induced accumulation landslides triggered by rainfall infiltration[J]. Water, 2021, 13(4): 466. doi: 10.3390/w13040466
    [30] Lu S, Huang B. Deforming tendency prediction study on typical accumulation landslide with step-like displacements in the Three Gorges Reservoir, China[J]. Arabian Journal of Geosciences, 2020, 13(9): 1-15.
    [31] 郭长宝, 张永双, 孟庆伟, 等. 重塑硅藻土抗剪强度的环剪试验研究[J]. 岩土力学, 2013, 34(1): 109-114, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301015.htm

    Guo C B, Zhang Y C, Meng Q W, et al. Research on shear strength of remolding diatomite by ring shear tests[J]. Rock and Soil Mechanics, 2013, 34(1): 109-114, 122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301015.htm
    [32] 刘动, 陈晓平. 滑带土环剪剪切面的微观观测与分析[J]. 岩石力学与工程学报, 2013, 32(9): 1827-1834. doi: 10.3969/j.issn.1000-6915.2013.09.014

    Liu D, Chen X P. Microscopic observation and analysis of ring shear surface of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1827-1834(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.09.014
    [33] 王玢佳, 王涛, 孙进忠, 等. 基于环剪试验的湟水河流域大型泥岩滑坡滑带剪切特征初探[J]. 工程地质学报, 2017, 25(1): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701017.htm

    Wang B J, Wang T, Sun J Z, et al. Shearing characteristic of sliding zone soil from ring shear tests for large scale mudstone landslides in Huangshui River Basin[J]. Journal of Engineering Geology, 2017, 25(1): 123-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701017.htm
    [34] 胡明鉴, 汪发武, 程谦恭. 基于高速环剪试验易贡巨型滑坡形成原因试验探索[J]. 岩土工程学报, 2009, 31(10): 1602-1606. doi: 10.3321/j.issn:1000-4548.2009.10.020

    Hu M J, Wang F H, Cheng Q G. Formation of tremendous Yigong landslide based on high-speed shear tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1602-1606(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2009.10.020
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  780
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28

目录

    /

    返回文章
    返回