County comprehensive geohazard modelling based on the grid maximum method
-
摘要: 四川省地形高低悬殊, 岩性构造发育, 各类地质灾害频发, 开展地质灾害易发性评价具有重要意义。崩塌、泥石流属于广义上的滑坡, 以四川省丹巴县为例, 从考虑不同滑坡类别的区域性地质灾害易发性出发综合考虑崩塌、滑坡、泥石流的空间概率分布。基于ArcGIS通过高精度数字高程模型共选取高程、坡度等10个地质灾害关键控制因素, 采用信息量模型对综合地质灾害进行了易发性评价。最终通过ArcGIS的单元统计(Cell Statistics)功能实现多个栅格图层最大值法合成综合易发性, 进一步利用受试者工作特征曲线(ROC)验证单种滑坡类别易发性模型的精度。按照自然断点法将研究区划分为极低、低、中、高、极高易发区, 高易发区和极高易发区主要集中分布在章谷镇、太平桥乡以及甲居镇等地。研究结果证明信息量模型能对单类地质灾害进行评价, 栅格最大值法是获取综合易发性的一种有效评价方法。Abstract: Sichuan Province is characterized by great differences in topography, lithologic structure and frequent occurrence of various local disasters. Therefore, it is of great significance to carry out evaluations of the vulnerability of geological disasters. Rockfall and debris flows are landslides in a broad sense. Taking Danba County, Sichuan Province, as a case study, the spatial probability distributions of collapse, landslide and debris flow are comprehensively considered from the perspective of the susceptibility of different types of landslides to regional geological disasters. Based on ArcGIS, 10 key control factors of geological hazards, such as elevation and slope, were selected by a high-precision digital elevation model, and the susceptibility of comprehensive geological hazards was evaluated by an information content model. Finally, the Cell Statistics function of ArcGIS was used to realize the synthesis and comprehensive vulnerability of the maximum value method of multiple raster layers, and the ROC curve was further used to verify the accuracy of the vulnerability model of landslide categories in a single area. According to the natural break point method, the very low-, low-, medium-, high- and very high-prone areas were divided, and the high- and very high-prone areas were mainly concentrated in Zhanggu Town, Taipingqiao Township and Jiaju Town.This paper shows that the information model can evaluate a single type of geological hazard and that the grid maximum method is an effective evaluation method to obtain the comprehensive vulnerability.
-
表 1 丹巴县崩塌灾害易发性评价因子信息量(I)统计
Table 1. Information content statistics of rockfall susceptibility evaluation factors in Danba County
高程/m < 1 800 [1 800, 2 000) [2 000, 2 200) [2 200, 2 500) [2 500, 3 000) [3 000, 3 500) [3 500, 4 000) [4 000, 4 500) [4 500, 5 000) [5 000, 5 409] I 0.45 1.00 0.93 0.74 0.57 0.13 0.00 0.45 0.45 0.45 坡度/(°) < 10 [10, 20) [20, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60] >60 I 0.01 0.34 0.42 0.43 0.57 0.80 0.84 0.85 0.20 0.10 岩性 半坚硬中厚层状变质岩 坚硬中厚层状变质岩 坚硬花岗岩 坚硬碳酸盐岩 松散堆积岩 I 0.36 0.26 0.14 0.35 0.99 NDVI < 0.2 0.40 0.6 0.8 1.0 I 0.68 1.00 0.51 0.23 0 距断层距离/km [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) I 0.94 0.90 0.78 0.66 0.68 0.10 0.48 0.65 0.56 0.49 距断层距离/km [10, 11) [11, 12) [12, 13) [13, 14) [14, 15) [15, 16) [16, 17) [17, 18) [18, 19) [19, 20] I 0.26 0.31 0.26 0 0.10 0.10 0 0 0 0 曲率 < -5 [-5, -2) [-2, -1) [-1, -0.5) [-0.5, 0] [0, 0.5) [0.5, 1) [1, 2) [2, 5] >5 I 1.00 0.83 0.19 0.39 0.31 0.33 0.14 0.13 0 0.32 表 2 丹巴县滑坡灾害易发性评价因子信息量(I)统计
Table 2. Information content statistics of landslide susceptibility evaluation factors in Danba County
高程/m < 1 800 [1 800, 2 000) [2 000, 2 200) [2 200, 2 500) [2 500, 3 000) [3 000, 3 500) [3 500, 4 000) [4 000, 4 500) [4 500, 5 000) [5 000, 5 409] I 0.62 1.00 0.94 0.89 0.83 0.52 0.18 0 0.62 0.62 坡度/(°) < 10 [10, 20) [20, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60] >60 I 0.60 0.92 1.00 0.90 0.74 0.61 0.47 0 0 0.10 距河流距离/km < 0.5 [0.5, 1.0) [1.0, 1.5) [1.5, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) I 0.99 0.95 0.83 0.82 0.76 0.58 0.44 0.46 0 0.62 距河流距离/km [8, 9) [9, 10) [10, 11) [11, 12) [12, 13) [13, 14) [14, 15) [15, 20) [20, 24] I 0.62 0.62 0.33 0.11 0.62 0.62 0.62 0.62 0.62 土地利用类型 旱地 灌木 经济作物 林地 建筑用地 工矿企业 其他 道路 河流水面 草地 设施农用 I 0.66 0.54 0.93 0.36 1.00 0 0 0.90 0 0 0 距断层距离/km [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) I 0.95 0.94 0.78 0.73 0.71 0 0.64 0.63 0.71 0.62 距断层距离/km [10, 11) [11, 12) [12, 13) [13, 14) [14, 15) [15, 16) [16, 17) [17, 18) [18, 19) [19, 20] I 0.63 0.59 0.56 0.54 0.26 0.24 0.15 0 0 0 岩性 半坚硬中厚层状变质岩 坚硬中厚层状变质岩 坚硬花岗岩 坚硬碳酸盐岩 松散堆积岩 I 0.65 0.32 0 0.72 1.00 表 3 丹巴县泥石流灾害易发性评价因子信息量(I)统计
Table 3. Information content statistics of the debris flow susceptibility evaluation factors in Danba County
高程/m < 1 800 [1 800, 2 000) [2 000, 2 200) [2 200, 2 500) [2 500, 3 000) [3 000, 3 500) [3 500, 4 000) [4 000, 4 500) [4 500, 5 000) [5 000, 5 409] I 0.59 1.00 0.93 0.90 0.77 0.45 0.26 0 0.59 0.59 坡度/(°) < 10 [10, 20) [20, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60] >60 I 1.00 0.70 0.24 0.25 0.19 0.12 0.02 0.10 0 0.17 TWI [2.9, 6.7) [6.7, 7.7) [7.7, 8.5) [8.5, 9.3) [9.3, 10.3) [10.3, 11.6) [11.6, 13.4) [13.4, 22.5) I 0.12 0 0.23 0.39 0.51 0.57 0.81 1.00 SPI < 1 [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) I 0.62 0.62 0.33 0.11 0.62 0.62 0.62 0.62 岩性 半坚硬中厚层状变质岩 坚硬中厚层状变质岩 坚硬花岗岩 坚硬碳酸盐岩 松散堆积岩 I 0.66 0.54 0.93 0.36 1.00 -
[1] 许冲, 徐锡伟. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报, 2012, 31(3): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203019.htmXu C, Xu X W. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information, 2012, 31(3): 116-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203019.htm [2] 唐川, 马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学, 2015, 35(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201501011.htmTang C, Ma G C. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015, 35(1): 91-98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201501011.htm [3] Shi M Y, Chen J P, Sun D Y, et al. Hazard assessment of debris flows based on the catastrophe progression method: A case study from the Wudongde Dam site[J]. International Journal of Heat and Technology, 2015, 33(4): 217-220. doi: 10.18280/ijht.330429 [4] Chang Z L, Du Z, Zhang F, et al. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models[J]. Remote Sensing, 2020, 12(3): 502-522. doi: 10.3390/rs12030502 [5] 兰恒星, 伍法权, 王思敬. 基于GIS的滑坡CF多元回归模型及其应用[J]. 山地学报, 2002, 20(6): 732-737. doi: 10.3969/j.issn.1008-2786.2002.06.015Lan H X, Wu F Q, Wang S J. GIS based landslide CF multi-variable[J]. Journal of Mountain Science, 2002, 20(6): 732-737(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2002.06.015 [6] 武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报: 信息科学版, 2016, 41(5): 665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201605015.htmWu X L, Shen S Q, Niu R Q. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201605015.htm [7] 田春山, 刘希林, 汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质, 2016, 43(6): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htmTian C S, Liu X L, Wang J. Geohazard susceptibility assessment based on CF model and logistic regression models in Guangdong[J]. Hydrogeology and Engineering Geology, 2016, 43(6): 154-161(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm [8] 任敬, 范宣梅, 赵程, 等. 贵州省都匀市滑坡易发性评价研究[J]. 水文地质工程地质, 2018, 45(5): 171-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805024.htmRen J, Fan X M, Zhao C, et al. Evaluation of the landslide vulnerability in Duyun of Guizhou Province[J]. Hydrogeology and Engineering Geology, 2018, 45(5): 171-178(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805024.htm [9] 苏晨旭, 田钦, 刘本朝, 等. 江西省龙南县易发性评价[J]. 科学技术与工程, 2019, 19(17): 91-99. doi: 10.3969/j.issn.1671-1815.2019.17.012Su C X, Tian Q, Liu B C, et al. Regional landslide susceptibility assessment for Longnan County in Jiangxi Province[J]. Science Technology and Engineering, 2019, 19(17): 91-99(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2019.17.012 [10] Zhou C, Yin K L, Cao Y, et al. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China[J]. Computers and Geosciences, 2018, 112: 23-37. doi: 10.1016/j.cageo.2017.11.019 [11] Huang F M, Wang Y, Dong Z L, et al. Regional landslide susceptibility mapping based on grey relational degree model[J]. Earth Science, 2019, 44(2): 664-676. [12] 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htmHuang F M, Yin K L, Jiang S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm [13] 黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报, 2021, 40(6): 1155-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htmHuang F M, Chen J W, Tang Z P, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1155-1160(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm [14] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技情报, 2020, 39(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htmLian Z P, Xu Y, Fu S, et al. Landslide susceptibility assessment based on multi-model fusion method: A case study in Wufeng County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm [15] 胡燕, 李德营, 孟颂颂, 等. 基于证据权法的巴东县城滑坡灾害易发性评价[J]. 地质科技通报, 2020, 39(3): 187-194. doi: 10.19509/j.cnki.dzkq.2020.0320Hu Y, Li D Y, Meng S S, et al. Landslide susceptibility evaluation in Badong County based on weights of evidence method[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 187-194(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0320 [16] 张书豪, 吴光. 随机森林与GIS的泥石流易发性及可靠性[J]. 地球科学, 2019, 44(9): 3115-3134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htmZhang S H, Wu G. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019, 44(9): 3115-3134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm [17] 彭珂, 彭红霞, 梁峰, 等. 基于信息量模型的赣州市地质灾害易发性分区[J]. 安全与环境工程, 2018, 25(5): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201805004.htmPeng K, Peng H X, Liang F, et al. Susceptibility zoning of geo-hazards in Ganzhou City based on the information model[J]. Safety and Environmental Engineering, 2018, 25(5): 22-28(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201805004.htm [18] 郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htmGuo Z Z, Yin K L, Huang F M, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287-300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm [19] 许强, 张一凡, 陈伟. 西南山区城镇地质灾害易损性评价方法: 以四川省丹巴县城为例[J]. 地质通报, 2010, 29(5): 729-738. doi: 10.3969/j.issn.1671-2552.2010.05.013Xu Q, Zhang Y F, Chen W. Vulnerability assessment of geo-hazards in southwest mountainous area: Danba County, Sichuan, China as an example[J]. Geological Bulletin of China, 2010, 29(5): 729-738(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.05.013 [20] 陈伟. 西南山区城镇建设地质灾害风险管理控制方法研究[D]. 成都: 成都理工大学, 2011.Chen W. Study on geohazard risk management methods in southwest mountain towns construction[D]. Chengdu: Chengdu University of Technology, 2011(in Chinese with English abstract). [21] 王治华. 滑坡图像自动识别浅议[J]. 地球信息科学学报, 2013, 15(5): 726-733. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201305016.htmWang Z H. A preliminary discussion on landslide pattern recognition[J]. Journal of Geo-Information Science, 2013, 15(5): 726-733(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201305016.htm [22] Wang L J, Sawada K, Moriguchi S J. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy[J]. Computer & Sciences, 2013, 57: 81-92. [23] 文洪, 王栋, 王生仁, 等. 藏东南帕隆藏布流域雪崩关键影响因素与易发性区划研究[J]. 工程地质学报, 2021, 29(2): 404-415. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102011.htmWen H, Wang D, Wang S R, et al. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment, southeast Tibetan Plateau[J]. Journal of Engineering Geology, 2021, 29(2): 404-415(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102011.htm [24] Zhu L, Huang L H, Fan L Y, et al. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors, 2020, 20(6): 1576-1600. doi: 10.3390/s20061576 [25] Wang Q, Wang Y, Niu R Q, et al. Integration of information theory, K-means cluster analysis and the logistic regression model for landslide susceptibility mapping in the Three Gorges area, China[J]. Remote Sensing, 2017, 9(9): 938-966. doi: 10.3390/rs9090938 [26] 胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. doi: 10.19509/j.cnki.dzkq.2020.0212Hu T, Fan X, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0212 [27] 陈怡, 范宣梅. 震后地质灾害易发性评价: 以映秀震区为例[J]. 科学技术与工程, 2020, 20(9): 3516-3527. doi: 10.3969/j.issn.1671-1815.2020.09.021Chen Y, Fan X M. Susceptibility assessment of post-earthquake geo-hazard in the epicentral area of the 2008 Wenchuan Eearthquake near Yingxiu Town[J]. Science Technology and Engineering, 2020, 20(9): 3516-3527(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2020.09.021 [28] 陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2021, 39(A1): 2859-2870.Chen F, Cai C, Li X S, et al. Evaluation of landslide susceptibility based on information volume and neural network model, 2021, 39(A1): 2859-2870(in Chinese with English abstract). [29] 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htmZhang J, Yin K L, Wang J J, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm [30] 黄栋, 乔建平, 张小刚, 等. 堆积层斜坡地震动地形效应试验研究[J]. 岩石力学与工程学报, 2017, 36(3): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703008.htmHuang D, Qiao J P, Zhang X G, et al. Experimental research of the topographic effects of slopes in earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 587-598(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703008.htm [31] 陈前, 晏鄂川, 黄少平, 等. 基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J]. 地质科技通报, 2020, 39(2): 175-185. doi: 10.19509/j.cnki.dzkq.2020.0219Chen Q, Yan E C, Huang S P, et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 175-185(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0219 [32] 杨永刚, 殷坤龙, 赵海燕, 等. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 2019, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htmYang Y G, Yin K L, Zhao H Y, et al. Landslide susceptibility evaluation for township units of bank section in Wanzhou district based on C5.0 decision tree and K-means cluster model[J]. Geological Science and Technology Information, 2019, 38(6): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm