留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于栅格最大值法的县域综合地质灾害建模

范雅婕 范宣梅 方成勇

范雅婕, 范宣梅, 方成勇. 基于栅格最大值法的县域综合地质灾害建模[J]. 地质科技通报, 2022, 41(2): 197-208. doi: 10.19509/j.cnki.dzkq.2022.0046
引用本文: 范雅婕, 范宣梅, 方成勇. 基于栅格最大值法的县域综合地质灾害建模[J]. 地质科技通报, 2022, 41(2): 197-208. doi: 10.19509/j.cnki.dzkq.2022.0046
Fan Yajie, Fan Xuanmei, Fang Chengyong. County comprehensive geohazard modelling based on the grid maximum method[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 197-208. doi: 10.19509/j.cnki.dzkq.2022.0046
Citation: Fan Yajie, Fan Xuanmei, Fang Chengyong. County comprehensive geohazard modelling based on the grid maximum method[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 197-208. doi: 10.19509/j.cnki.dzkq.2022.0046

基于栅格最大值法的县域综合地质灾害建模

doi: 10.19509/j.cnki.dzkq.2022.0046
详细信息
    作者简介:

    范雅婕(1997—),女,现正攻读地质工程专业硕士学位,主要从事地质灾害风险评价与防治研究。E-mail: 779232340@qq.com

    通讯作者:

    范宣梅(1981—),女,研究员,博士生导师,主要从事遥感和地理信息系统在地质学科中的应用研究、地质灾害风险评价与防治研究。E-mail: 18202308@qq.com

  • 中图分类号: X84

County comprehensive geohazard modelling based on the grid maximum method

  • 摘要: 四川省地形高低悬殊, 岩性构造发育, 各类地质灾害频发, 开展地质灾害易发性评价具有重要意义。崩塌、泥石流属于广义上的滑坡, 以四川省丹巴县为例, 从考虑不同滑坡类别的区域性地质灾害易发性出发综合考虑崩塌、滑坡、泥石流的空间概率分布。基于ArcGIS通过高精度数字高程模型共选取高程、坡度等10个地质灾害关键控制因素, 采用信息量模型对综合地质灾害进行了易发性评价。最终通过ArcGIS的单元统计(Cell Statistics)功能实现多个栅格图层最大值法合成综合易发性, 进一步利用受试者工作特征曲线(ROC)验证单种滑坡类别易发性模型的精度。按照自然断点法将研究区划分为极低、低、中、高、极高易发区, 高易发区和极高易发区主要集中分布在章谷镇、太平桥乡以及甲居镇等地。研究结果证明信息量模型能对单类地质灾害进行评价, 栅格最大值法是获取综合易发性的一种有效评价方法。

     

  • 图 1  丹巴县地质灾害概况

    Figure 1.  Overview of the geohazards in Danba County

    图 2  丹巴县崩塌灾害易发性评价因子图

    Figure 2.  Factor chart of susceptibility evaluation of rockfalls in Danba County

    图 3  丹巴县滑坡灾害易发性评价因子图

    Figure 3.  Factor chart of susceptibility evaluation of landslides in Danba County

    图 4  丹巴县泥石流灾害易发性评价因子图

    Figure 4.  Factor chart of susceptibility evaluation of debris flows in Danba County

    图 5  崩塌因子柱状图

    (图中R3因子由于分级数太多只能相间列出,具体见表 1)

    Figure 5.  Factor histogram of rockfall

    图 6  滑坡因子柱状图

    (图中因子L3、L4因分级数太多只能相间列出,具体分级见表 2)

    Figure 6.  Factor histogram of landslide

    图 7  泥石流因子柱状图

    Figure 7.  Factor histogram of debris flow

    图 8  丹巴县崩塌灾害易发性分区

    Figure 8.  Subdivision of rockfall susceptibility in Danba County

    图 9  丹巴县崩塌易发性评价ROC曲线

    Figure 9.  ROC curve of rockfall susceptibility evaluation in Danba County

    图 10  丹巴县滑坡灾害易发性分区

    Figure 10.  Subdivision of landslide susceptibility in Danba County

    图 11  丹巴县滑坡易发性评价ROC曲线

    Figure 11.  ROC curve of landslide susceptibility evaluation in Danba County

    图 12  丹巴县泥石流灾害易发性分区

    Figure 12.  Subdivision of debris flow susceptibility in Danba County

    图 13  丹巴县泥石流易发性评价ROC曲线

    Figure 13.  ROC curve of debris flow susceptibility evaluation in Danba County

    图 14  丹巴县综合地质灾害易发性分区

    Figure 14.  Subdivision of comprehensive susceptibility in Danba County

    图 15  丹巴县综合地质灾害易发性评价ROC曲线

    Figure 15.  ROC curve of comprehensive susceptibility evaluation in Danba County

    表  1  丹巴县崩塌灾害易发性评价因子信息量(I)统计

    Table  1.   Information content statistics of rockfall susceptibility evaluation factors in Danba County

    高程/m < 1 800 [1 800, 2 000) [2 000, 2 200) [2 200, 2 500) [2 500, 3 000) [3 000, 3 500) [3 500, 4 000) [4 000, 4 500) [4 500, 5 000) [5 000, 5 409]
    I 0.45 1.00 0.93 0.74 0.57 0.13 0.00 0.45 0.45 0.45
    坡度/(°) < 10 [10, 20) [20, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60] >60
    I 0.01 0.34 0.42 0.43 0.57 0.80 0.84 0.85 0.20 0.10
    岩性 半坚硬中厚层状变质岩 坚硬中厚层状变质岩 坚硬花岗岩 坚硬碳酸盐岩 松散堆积岩
    I 0.36 0.26 0.14 0.35 0.99
    NDVI < 0.2 0.40 0.6 0.8 1.0
    I 0.68 1.00 0.51 0.23 0
    距断层距离/km [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10)
    I 0.94 0.90 0.78 0.66 0.68 0.10 0.48 0.65 0.56 0.49
    距断层距离/km [10, 11) [11, 12) [12, 13) [13, 14) [14, 15) [15, 16) [16, 17) [17, 18) [18, 19) [19, 20]
    I 0.26 0.31 0.26 0 0.10 0.10 0 0 0 0
    曲率 < -5 [-5, -2) [-2, -1) [-1, -0.5) [-0.5, 0] [0, 0.5) [0.5, 1) [1, 2) [2, 5] >5
    I 1.00 0.83 0.19 0.39 0.31 0.33 0.14 0.13 0 0.32
    下载: 导出CSV

    表  2  丹巴县滑坡灾害易发性评价因子信息量(I)统计

    Table  2.   Information content statistics of landslide susceptibility evaluation factors in Danba County

    高程/m < 1 800 [1 800, 2 000) [2 000, 2 200) [2 200, 2 500) [2 500, 3 000) [3 000, 3 500) [3 500, 4 000) [4 000, 4 500) [4 500, 5 000) [5 000, 5 409]
    I 0.62 1.00 0.94 0.89 0.83 0.52 0.18 0 0.62 0.62
    坡度/(°) < 10 [10, 20) [20, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60] >60
    I 0.60 0.92 1.00 0.90 0.74 0.61 0.47 0 0 0.10
    距河流距离/km < 0.5 [0.5, 1.0) [1.0, 1.5) [1.5, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8)
    I 0.99 0.95 0.83 0.82 0.76 0.58 0.44 0.46 0 0.62
    距河流距离/km [8, 9) [9, 10) [10, 11) [11, 12) [12, 13) [13, 14) [14, 15) [15, 20) [20, 24]
    I 0.62 0.62 0.33 0.11 0.62 0.62 0.62 0.62 0.62
    土地利用类型 旱地 灌木 经济作物 林地 建筑用地 工矿企业 其他 道路 河流水面 草地 设施农用
    I 0.66 0.54 0.93 0.36 1.00 0 0 0.90 0 0 0
    距断层距离/km [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10)
    I 0.95 0.94 0.78 0.73 0.71 0 0.64 0.63 0.71 0.62
    距断层距离/km [10, 11) [11, 12) [12, 13) [13, 14) [14, 15) [15, 16) [16, 17) [17, 18) [18, 19) [19, 20]
    I 0.63 0.59 0.56 0.54 0.26 0.24 0.15 0 0 0
    岩性 半坚硬中厚层状变质岩 坚硬中厚层状变质岩 坚硬花岗岩 坚硬碳酸盐岩 松散堆积岩
    I 0.65 0.32 0 0.72 1.00
    下载: 导出CSV

    表  3  丹巴县泥石流灾害易发性评价因子信息量(I)统计

    Table  3.   Information content statistics of the debris flow susceptibility evaluation factors in Danba County

    高程/m < 1 800 [1 800, 2 000) [2 000, 2 200) [2 200, 2 500) [2 500, 3 000) [3 000, 3 500) [3 500, 4 000) [4 000, 4 500) [4 500, 5 000) [5 000, 5 409]
    I 0.59 1.00 0.93 0.90 0.77 0.45 0.26 0 0.59 0.59
    坡度/(°) < 10 [10, 20) [20, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60] >60
    I 1.00 0.70 0.24 0.25 0.19 0.12 0.02 0.10 0 0.17
    TWI [2.9, 6.7) [6.7, 7.7) [7.7, 8.5) [8.5, 9.3) [9.3, 10.3) [10.3, 11.6) [11.6, 13.4) [13.4, 22.5)
    I 0.12 0 0.23 0.39 0.51 0.57 0.81 1.00
    SPI < 1 [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8)
    I 0.62 0.62 0.33 0.11 0.62 0.62 0.62 0.62
    岩性 半坚硬中厚层状变质岩 坚硬中厚层状变质岩 坚硬花岗岩 坚硬碳酸盐岩 松散堆积岩
    I 0.66 0.54 0.93 0.36 1.00
    下载: 导出CSV
  • [1] 许冲, 徐锡伟. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报, 2012, 31(3): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203019.htm

    Xu C, Xu X W. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information, 2012, 31(3): 116-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203019.htm
    [2] 唐川, 马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学, 2015, 35(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201501011.htm

    Tang C, Ma G C. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015, 35(1): 91-98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201501011.htm
    [3] Shi M Y, Chen J P, Sun D Y, et al. Hazard assessment of debris flows based on the catastrophe progression method: A case study from the Wudongde Dam site[J]. International Journal of Heat and Technology, 2015, 33(4): 217-220. doi: 10.18280/ijht.330429
    [4] Chang Z L, Du Z, Zhang F, et al. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models[J]. Remote Sensing, 2020, 12(3): 502-522. doi: 10.3390/rs12030502
    [5] 兰恒星, 伍法权, 王思敬. 基于GIS的滑坡CF多元回归模型及其应用[J]. 山地学报, 2002, 20(6): 732-737. doi: 10.3969/j.issn.1008-2786.2002.06.015

    Lan H X, Wu F Q, Wang S J. GIS based landslide CF multi-variable[J]. Journal of Mountain Science, 2002, 20(6): 732-737(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2002.06.015
    [6] 武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报: 信息科学版, 2016, 41(5): 665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201605015.htm

    Wu X L, Shen S Q, Niu R Q. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201605015.htm
    [7] 田春山, 刘希林, 汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质, 2016, 43(6): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm

    Tian C S, Liu X L, Wang J. Geohazard susceptibility assessment based on CF model and logistic regression models in Guangdong[J]. Hydrogeology and Engineering Geology, 2016, 43(6): 154-161(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm
    [8] 任敬, 范宣梅, 赵程, 等. 贵州省都匀市滑坡易发性评价研究[J]. 水文地质工程地质, 2018, 45(5): 171-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805024.htm

    Ren J, Fan X M, Zhao C, et al. Evaluation of the landslide vulnerability in Duyun of Guizhou Province[J]. Hydrogeology and Engineering Geology, 2018, 45(5): 171-178(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805024.htm
    [9] 苏晨旭, 田钦, 刘本朝, 等. 江西省龙南县易发性评价[J]. 科学技术与工程, 2019, 19(17): 91-99. doi: 10.3969/j.issn.1671-1815.2019.17.012

    Su C X, Tian Q, Liu B C, et al. Regional landslide susceptibility assessment for Longnan County in Jiangxi Province[J]. Science Technology and Engineering, 2019, 19(17): 91-99(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2019.17.012
    [10] Zhou C, Yin K L, Cao Y, et al. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China[J]. Computers and Geosciences, 2018, 112: 23-37. doi: 10.1016/j.cageo.2017.11.019
    [11] Huang F M, Wang Y, Dong Z L, et al. Regional landslide susceptibility mapping based on grey relational degree model[J]. Earth Science, 2019, 44(2): 664-676.
    [12] 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm

    Huang F M, Yin K L, Jiang S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
    [13] 黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报, 2021, 40(6): 1155-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm

    Huang F M, Chen J W, Tang Z P, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1155-1160(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
    [14] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技情报, 2020, 39(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm

    Lian Z P, Xu Y, Fu S, et al. Landslide susceptibility assessment based on multi-model fusion method: A case study in Wufeng County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm
    [15] 胡燕, 李德营, 孟颂颂, 等. 基于证据权法的巴东县城滑坡灾害易发性评价[J]. 地质科技通报, 2020, 39(3): 187-194. doi: 10.19509/j.cnki.dzkq.2020.0320

    Hu Y, Li D Y, Meng S S, et al. Landslide susceptibility evaluation in Badong County based on weights of evidence method[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 187-194(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0320
    [16] 张书豪, 吴光. 随机森林与GIS的泥石流易发性及可靠性[J]. 地球科学, 2019, 44(9): 3115-3134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm

    Zhang S H, Wu G. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019, 44(9): 3115-3134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm
    [17] 彭珂, 彭红霞, 梁峰, 等. 基于信息量模型的赣州市地质灾害易发性分区[J]. 安全与环境工程, 2018, 25(5): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201805004.htm

    Peng K, Peng H X, Liang F, et al. Susceptibility zoning of geo-hazards in Ganzhou City based on the information model[J]. Safety and Environmental Engineering, 2018, 25(5): 22-28(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201805004.htm
    [18] 郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm

    Guo Z Z, Yin K L, Huang F M, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287-300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm
    [19] 许强, 张一凡, 陈伟. 西南山区城镇地质灾害易损性评价方法: 以四川省丹巴县城为例[J]. 地质通报, 2010, 29(5): 729-738. doi: 10.3969/j.issn.1671-2552.2010.05.013

    Xu Q, Zhang Y F, Chen W. Vulnerability assessment of geo-hazards in southwest mountainous area: Danba County, Sichuan, China as an example[J]. Geological Bulletin of China, 2010, 29(5): 729-738(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.05.013
    [20] 陈伟. 西南山区城镇建设地质灾害风险管理控制方法研究[D]. 成都: 成都理工大学, 2011.

    Chen W. Study on geohazard risk management methods in southwest mountain towns construction[D]. Chengdu: Chengdu University of Technology, 2011(in Chinese with English abstract).
    [21] 王治华. 滑坡图像自动识别浅议[J]. 地球信息科学学报, 2013, 15(5): 726-733. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201305016.htm

    Wang Z H. A preliminary discussion on landslide pattern recognition[J]. Journal of Geo-Information Science, 2013, 15(5): 726-733(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201305016.htm
    [22] Wang L J, Sawada K, Moriguchi S J. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy[J]. Computer & Sciences, 2013, 57: 81-92.
    [23] 文洪, 王栋, 王生仁, 等. 藏东南帕隆藏布流域雪崩关键影响因素与易发性区划研究[J]. 工程地质学报, 2021, 29(2): 404-415. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102011.htm

    Wen H, Wang D, Wang S R, et al. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment, southeast Tibetan Plateau[J]. Journal of Engineering Geology, 2021, 29(2): 404-415(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102011.htm
    [24] Zhu L, Huang L H, Fan L Y, et al. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors, 2020, 20(6): 1576-1600. doi: 10.3390/s20061576
    [25] Wang Q, Wang Y, Niu R Q, et al. Integration of information theory, K-means cluster analysis and the logistic regression model for landslide susceptibility mapping in the Three Gorges area, China[J]. Remote Sensing, 2017, 9(9): 938-966. doi: 10.3390/rs9090938
    [26] 胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. doi: 10.19509/j.cnki.dzkq.2020.0212

    Hu T, Fan X, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0212
    [27] 陈怡, 范宣梅. 震后地质灾害易发性评价: 以映秀震区为例[J]. 科学技术与工程, 2020, 20(9): 3516-3527. doi: 10.3969/j.issn.1671-1815.2020.09.021

    Chen Y, Fan X M. Susceptibility assessment of post-earthquake geo-hazard in the epicentral area of the 2008 Wenchuan Eearthquake near Yingxiu Town[J]. Science Technology and Engineering, 2020, 20(9): 3516-3527(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2020.09.021
    [28] 陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2021, 39(A1): 2859-2870.

    Chen F, Cai C, Li X S, et al. Evaluation of landslide susceptibility based on information volume and neural network model, 2021, 39(A1): 2859-2870(in Chinese with English abstract).
    [29] 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm

    Zhang J, Yin K L, Wang J J, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
    [30] 黄栋, 乔建平, 张小刚, 等. 堆积层斜坡地震动地形效应试验研究[J]. 岩石力学与工程学报, 2017, 36(3): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703008.htm

    Huang D, Qiao J P, Zhang X G, et al. Experimental research of the topographic effects of slopes in earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 587-598(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703008.htm
    [31] 陈前, 晏鄂川, 黄少平, 等. 基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J]. 地质科技通报, 2020, 39(2): 175-185. doi: 10.19509/j.cnki.dzkq.2020.0219

    Chen Q, Yan E C, Huang S P, et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 175-185(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0219
    [32] 杨永刚, 殷坤龙, 赵海燕, 等. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 2019, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm

    Yang Y G, Yin K L, Zhao H Y, et al. Landslide susceptibility evaluation for township units of bank section in Wanzhou district based on C5.0 decision tree and K-means cluster model[J]. Geological Science and Technology Information, 2019, 38(6): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  628
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07

目录

    /

    返回文章
    返回