留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于修正Green-Ampt模型的降雨诱发区域浅层斜坡失稳灾害分析

阳帅 谭泽颖 陈宏信 张洁

阳帅, 谭泽颖, 陈宏信, 张洁. 基于修正Green-Ampt模型的降雨诱发区域浅层斜坡失稳灾害分析[J]. 地质科技通报, 2022, 41(2): 219-227. doi: 10.19509/j.cnki.dzkq.2022.0048
引用本文: 阳帅, 谭泽颖, 陈宏信, 张洁. 基于修正Green-Ampt模型的降雨诱发区域浅层斜坡失稳灾害分析[J]. 地质科技通报, 2022, 41(2): 219-227. doi: 10.19509/j.cnki.dzkq.2022.0048
Yang Shuai, Tan Zeying, Chen Hongxin, Zhang Jie. Analysis of instability disaster of rainfall induced shallow landslides at the regional scale based on the modified Green Ampt model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 219-227. doi: 10.19509/j.cnki.dzkq.2022.0048
Citation: Yang Shuai, Tan Zeying, Chen Hongxin, Zhang Jie. Analysis of instability disaster of rainfall induced shallow landslides at the regional scale based on the modified Green Ampt model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 219-227. doi: 10.19509/j.cnki.dzkq.2022.0048

基于修正Green-Ampt模型的降雨诱发区域浅层斜坡失稳灾害分析

doi: 10.19509/j.cnki.dzkq.2022.0048
基金项目: 

国家重点研发计划项目 2021YFB260050

国家自然科学基金项目 42072302

上海市教育发展基金会和上海市教育委员会曙光计划 19SG19

中央高校基本科研业务费专项资金 

详细信息
    作者简介:

    阳帅(1995—),男,现正攻读建筑与工程专业硕士学位,主要从事岩土边坡工程灾害研究工作。E-mail: ys@tongji.edu.cn

    通讯作者:

    张洁(1980—),男,教授,博士生导师,主要从事岩土和地下工程灾害、风险分析及控制研究工作。E-mail: cezhangjie@tongji.edu.cn

  • 中图分类号: P642.22

Analysis of instability disaster of rainfall induced shallow landslides at the regional scale based on the modified Green Ampt model

  • 摘要: 由于具有类似的工程地质和水文地质条件, 在高度相关的降雨作用下, 同一个区域中的降雨诱发浅层斜坡失稳灾害常成群出现。在区域尺度预测浅层斜坡失稳灾害对滑坡灾害的防灾减灾工作具有重要的意义。为此, 提出了一种基于力学原理的降雨诱发浅层斜坡失稳灾害预测新模型RARIL。该模型采用修正Green-Ampt模型进行降雨入渗分析, 采用无限体边坡模型进行安全系数计算, 利用可靠度原理考虑区域斜坡稳定性分析中的参数不确定性。该模型具有可考虑降雨诱发浅层斜坡的失稳力学机理、可考虑区域内斜坡土体参数不确定性, 以及计算效率高、易于在GIS平台上实现等优点。案例分析表明, RARIL模型较为准确地预测了2010年8月12日11∶00至2010年8月14日9∶00期间强降雨在四川省汶川县映秀镇附近的303省道K0-K20段沿线区域引发的滑坡灾害, 研究结果证明RARIL模型在预测降雨诱发区域斜坡失稳灾害方面有很好的应用前景。

     

  • 图 1  SHALSTAB模型滑动面示意图

    Figure 1.  Schematic diagram of the sliding surface of the SHALSTAB model

    图 2  边坡降雨入渗示意图(W为上层土的重力)

    Figure 2.  Diagram of unsaturated soil on a slope

    图 3  降雨强度-入渗率关系图

    Figure 3.  Relationship between rainfall intensity and infiltration rate

    图 4  计算模型流程图

    Figure 4.  Flow chart of the calculation model

    图 5  研究区地理位置

    Figure 5.  Location of the study area

    图 6  研究区表层土体分布

    Figure 6.  Superficial soil distribution in the study area

    图 7  研究区降雨记录

    Figure 7.  Rainfall records of the study area

    图 8  2010年8月12日降雨后的滑坡分布

    Figure 8.  Distribution of landslides after rainfall on August 12, 2010

    图 9  降雨后(t=46 h)失稳区计算结果

    Figure 9.  Calculation results of unstable area after rainfall(t=46 h)

    图 10  受试者工作特征曲线(ROC)

    Figure 10.  Receiver operating characteristic(ROC) curves

    表  1  研究区岩土体物理力学参数

    Table  1.   Pysical and mechanical parameters of rock and soil

    土类 c/kPa φ/(°) ks/
    (m·
    s-1)
    θs θi γs/
    (kN·
    m-3)
    μ COV/% μ COV/%
    植被覆盖土层 10.5 5 37 15 1×10-6 0.40 0.25 21
    基岩 - - - - 0 - - -
    松散土体层 4.0 50 37 15 1×10-5 0.42 0.18 21
    河床 - - - - 1×10-3 - - -
    注:μ为平均值;COV为变异系数
    下载: 导出CSV

    表  2  模型计算结果

    Table  2.   Calculation results of model

    风险等级 稳定 潜在不稳定 不稳定 极不稳定 总面积/
    km2
    pf < 5% 5 < pf < 10% 10% < pf < 50% 50% < pf
    模型预测的不同状态斜坡面积(km2)及占比 104.6(63.6%) 35.0(21.3%) 22.7(13.8%) 2.1(1.3%) 164.5
    不同区域内滑坡实际发生的面积(km2)及占比 1.3(1.2%) 3.9(11.1%) 9.1(40.1%) 1.9(90.1%) 16.2
    下载: 导出CSV

    表  3  受试者工作曲线混淆矩阵

    Table  3.   Confusion matrices of ROC

    预测结果
    滑坡 非滑坡
    实际结果 滑坡 TP(true positive,真阳性) FP(false positive,假阳性)
    非滑坡 FN(false negative,假阴性) TN(true negative,真阴性)
    ACC=(TP+TN)/N TPR=TP/(TP+FN) FPR=FN/(TN+FN)
    注:ACC.模型准确度;TPR.真阳性率;FPR.假阳性率
    下载: 导出CSV
  • [1] 刘勇, 秦志萌, 刘曼, 等. 基于状态划分的滑坡位移预测方法研究[J]. 地质科技情报, 2018, 37(1): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801025.htm

    Liu Y, Qin Z M, Liu M, et al. Landslide displacement prediction method based on state division[J]. Geological Science and Techology Information, 2018, 37(1): 184-189(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801025.htm
    [2] Zhou W H, Yuen K V, Tan F. Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities[J]. Engineering Geology, 2014, 179: 1-9. doi: 10.1016/j.enggeo.2014.06.013
    [3] Guzzetti F, Peruccacci S, Rossi M, et al. Rainfall thresholds for the initiation of landslides in central and southern Europe[J]. Meteorology and Atmospheric Physics, 2007, 98(3/4): 239-267. https://www.researchgate.net/publication/225426960_Rainfall_thresholds_for_the_initiation_of_landslides_in_Central_and_Southern_Europe
    [4] 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm

    Huang F M, Yin K L, Jiang S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
    [5] Segoni S, Piciullo L, Gariano S L. A review of the recent literature on rainfall thresholds for landslide occurrence[J]. Landslides, 2018, 15(8): 1483-1501. doi: 10.1007/s10346-018-0966-4
    [6] Zhang S J, Zhao L Q, Delgado-Tellez R, et al. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale[J]. Natural Hazards and Earth System Sciences, 2018, 18(3): 969-982. doi: 10.5194/nhess-18-969-2018
    [7] Wen H, Zhang Y, Fu H, et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport, 2018, 31(2): 15-29, 96. https://www.researchgate.net/publication/323350435_Study_of_rainfall-induced_landslide_a_review
    [8] Zhang L L, Zhang J, Zhang L M, et al. Stability analysis of rainfall-induced slope failure: A review[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2011, 164(5): 299-316. doi: 10.1680/geng.2011.164.5.299
    [9] 卢操, 晏鄂川, 张瑜, 等. 降雨作用下青石镇政府后山堆积层滑坡渗流与稳定性[J]. 地质科技通报, 2020, 39(2): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002016.htm

    Lu C, Yan E C, Zhang Y, et al. Seepage and stability of the colluvial landslide on the back hill of Qingshi Town Government under rainfall[J]. Bulletin of Geological Science and Techology, 2020, 39(2): 139-147(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002016.htm
    [10] Pack R T, Tarboton D G, Goodwin C N. SINMAP: A stability index approach to terrain stability hazard mapping, User′s manual[M]. Tarboton: Utah State University, 1999.
    [11] Montgomery D R, Dietrich W E. Channel initiation and the problem of landscape scale[J]. Science, 1992, 255: 826-830. doi: 10.1126/science.255.5046.826
    [12] Baum R L, Savage W Z, Godt J W. TRIGRS: A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis[M]. Version 2.0. Reston, VA, USA: US Geological Survey, 2008.
    [13] Zhan T L T, Jia G W, Chen Y M, et al. An analytical solution for rainfall infiltration into an unsaturated infinite slope and its application to slope stability analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(12): 1737-1760. doi: 10.1002/nag.2106
    [14] Montgomery D R, Dietrich W E. A physically-based model for the topographic control on shallow landsliding[J]. Water Resources Research, 1994, 30(4): 1153-1171. doi: 10.1029/93WR02979
    [15] Oloughlin E M. Prediction of surface saturation zones in natural catchments by topographic analysis[J]. Water Resources Research, 1986, 22(5): 794-804. doi: 10.1029/WR022i005p00794
    [16] Lu M, Zhang J, Zheng J, et al. Assessing annual probability of rainfall-induced slope failure through a mechanics-based model[J/OL]. Acta Geotechnica, 2021: 1-16. doi: 10.1007/S11440-021-01278-7.
    [17] Green W H, Ampt G A, Simulation N. Studies on soil physics: Ⅰ. The flow of air and water through soils[J]. International Journal of Nonlinear Sciences, 2015, 4(7/8): 1-24. https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1895377
    [18] Zhang J, Huang H W, Zhang L M, et al. Probabilistic prediction of rainfall-induced slope failure using a mechanics-based model[J]. Engineering Geology, 2014, 168: 129-140. doi: 10.1016/j.enggeo.2013.11.005
    [19] Muntohar A S, Liao H J. Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological-geotechnical model[J]. Environmental Geology, 2009, 56: 1145-1159. doi: 10.1007/s00254-008-1215-2
    [20] 曾江波, 付智勇, 肖林超, 等. 基于降雨作用下滑面抗剪强度动态变化的层状边坡稳定性评价[J]. 地质科技情报, 2018, 37(4): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804031.htm

    Zeng J B, Fu Z Y, Xiao L C, et al. Slope stability evaluation considering variation of shear strength of slip surface in layered slope under rainfall[J]. Geological Science and Techology Information, 2018, 37(4): 225-231(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804031.htm
    [21] Ang H S, Tang W H. Probability concepts in engineering planning and design[M]. New York: Risk and Reliability, 1984.
    [22] 郝明, 张建龙, 邓昌荣, 等. 基于3S技术的野外地质工作管理与服务应用研究: 以云南1: 5万泸西幅区域地质调查为例[J]. 地质科技情报, 2013, 32(2): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201302023.htm

    Hao M, Zhang J, Deng C, et al. The research and application of geology work in the field management and service based on 3S technology: Take 1: 50000 Luxi areal geology survey in Yunnan for example[J]. Geological Science and Techology Information, 2013, 32(2): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201302023.htm
    [23] 文广超, 苏林雪, 谢洪波, 等. "5·12"汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报, 2021, 40(4): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104013.htm

    Wen G C, Su L X, Xie H B, et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around" 5·12"Wenchuan earthquake[J]. Bulletin of Geological Science and Techology, 2021, 40(4): 143-152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104013.htm
    [24] Zhao H F, Zhang L M, Chang D S. Behavior of coarse widely graded soils under low confining pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 35-48. doi: 10.1061/(ASCE)GT.1943-5606.0000755
    [25] Coppin N J, Richards I G. Use of vegetation in civil engineering[M]. [S.l.]: [s.n.], 1990.
    [26] Zhao H F, Zhang L M, Xu Y, et al. Variability of geotechnical properties of a fresh landslide soil deposit[J]. Engineering Geology, 2013, 166: 1-10. doi: 10.1016/j.enggeo.2013.08.006
    [27] Chen H X, Zhang L M, Chang D S, et al. Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China[J]. Natural Hazards, 2012, 62(3): 1037-1057. doi: 10.1007/s11069-012-0133-5
    [28] Zhang S, Zhang L M, Peng M, et al. Assessment of risks of loose landslide deposits formed by the 2008 Wenchuan Earthquake[J]. Natural Hazards and Earth System Sciences, 2012, 12(5): 1381-1392. doi: 10.5194/nhess-12-1381-2012
    [29] 黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报, 2021, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm

    Huang F M, Chen J W, Tang Z P, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1155-1169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
    [30] Chen H X, Zhang L M. A physically-based distributed cell model for predicting regional rainfall-induced shallow slope failures[J]. Engineering Geology, 2014, 176: 79-92. doi: 10.1016/j.enggeo.2014.04.011
    [31] Intarawichian N, Dasananda S. Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, northern Thailand[J]. Environmental Earth Sciences, 2011, 64(8): 2271-2285. doi: 10.1007/s12665-011-1055-3
    [32] Ko Ko C, Flentje P, Chowdhury R. Landslides qualitative hazard and risk assessment method and its reliability[J]. Bulletin of Engineering Geology and the Environment, 2004, 63(2): 149-165. doi: 10.1007/s10064-004-0231-z
    [33] Zhuang J, Peng J, Wang G, et al. Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan′an, China, using the TRIGRS model[J]. Earth Surface Processes and Landforms, 2017, 42(6): 915-927. doi: 10.1002/esp.4050
    [34] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技通报, 2020, 39(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm

    Lian Z P, Xu Y, Fu S, et al. Landslide susceptibility assessment based on multir model fusion method: A case study in Wufeng County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm
    [35] 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365-372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the distribution model of invasive species[J]. Biodiversity, 2007, 15(4): 365-372(in Chinese with English abstract). doi: 10.3321/j.issn:1005-0094.2007.04.005
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  551
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30

目录

    /

    返回文章
    返回