留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑软弱夹层控滑机制及其空间不确定性的顺层岩质滑坡易发性评价: 万州区铁峰乡应用研究

冯霄 王禹 刘洋 刘庆丽 杜娟 柴波

冯霄, 王禹, 刘洋, 刘庆丽, 杜娟, 柴波. 考虑软弱夹层控滑机制及其空间不确定性的顺层岩质滑坡易发性评价: 万州区铁峰乡应用研究[J]. 地质科技通报, 2022, 41(2): 254-266. doi: 10.19509/j.cnki.dzkq.2022.0049
引用本文: 冯霄, 王禹, 刘洋, 刘庆丽, 杜娟, 柴波. 考虑软弱夹层控滑机制及其空间不确定性的顺层岩质滑坡易发性评价: 万州区铁峰乡应用研究[J]. 地质科技通报, 2022, 41(2): 254-266. doi: 10.19509/j.cnki.dzkq.2022.0049
Feng Xiao, Wang Yu, Liu Yang, Liu Qingli, Du Juan, Chai Bo. Susceptibility assessment of a translational rockslide considering the control mechanism and spatial uncertainty of a weak interlayer: Application study in Tiefeng Township, Wanzhou District[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 254-266. doi: 10.19509/j.cnki.dzkq.2022.0049
Citation: Feng Xiao, Wang Yu, Liu Yang, Liu Qingli, Du Juan, Chai Bo. Susceptibility assessment of a translational rockslide considering the control mechanism and spatial uncertainty of a weak interlayer: Application study in Tiefeng Township, Wanzhou District[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 254-266. doi: 10.19509/j.cnki.dzkq.2022.0049

考虑软弱夹层控滑机制及其空间不确定性的顺层岩质滑坡易发性评价: 万州区铁峰乡应用研究

doi: 10.19509/j.cnki.dzkq.2022.0049
基金项目: 

国家自然科学基金项目"大型堆积体滑坡控滑结构响应机制及滑坡位移频幅预测" 42172318

详细信息
    作者简介:

    冯霄(1997-), 男, 现正攻读地质工程专业硕士学位, 主要从事滑坡地质灾害预测预报及评估方面的研究。E-mail: fengxiao97@163.com

    通讯作者:

    杜娟(1984-), 女, 助理研究员, 主要从事地质灾害机理与风险分析方面的研究和教学工作。E-mail: dujuan@cug.edu.cn

  • 中图分类号: P642.22

Susceptibility assessment of a translational rockslide considering the control mechanism and spatial uncertainty of a weak interlayer: Application study in Tiefeng Township, Wanzhou District

  • 摘要: 顺层岩质滑坡突发性强, 破坏性大, 是危害山区城镇安全的重要灾害类型之一。发育软弱夹层的顺向斜坡是顺层岩质滑坡的高发区, 区域顺层岩质滑坡易发性评价应融入软弱夹层的控滑机制和空间分布不确定性分析。以万州区铁峰乡为研究区, 在软弱夹层物质结构及空间分布详细调查的基础上, 分析了原生沉积、构造变形和表生改造作用下区内页岩和泥岩两类软弱夹层发展为滑动面的演化机理, 总结了顺层岩质滑坡的变形破坏机理。考虑软弱夹层空间分布的不确定性, 提出了软弱夹层垂向分布和有效控滑深度范围内软弱夹层控滑贡献度的计算模型。提取了软弱夹层类型和控滑贡献度等表征顺层岩质滑坡控滑结构的关键指标, 结合地形地貌、斜坡结构、水文地质及人类工程活动4类要素, 构建了顺层岩质滑坡易发性评价指标体系。针对万州区铁峰乡河谷南侧的顺向坡区段, 以斜坡为评价单元, 采用层次分析法对研究区顺层岩质滑坡开展了易发性评价。结果显示研究区内侏罗系珍珠冲组泥化夹层和自流井组页岩层是顺层岩质滑坡的主要控滑层位, 极高易发区和高易发区占比分别为9.7%和25.8%, 岩质斜坡单元下伏软弱夹层分布情况和斜坡前缘开挖情况是影响滑坡灾害易发性的主要因素, 建房和道路开挖等人类工程活动极易诱发顺层岩质滑坡灾害。与不考虑软弱夹层相关指标的易发性评价结果相比, 本文方法的结果更符合实际情况。

     

  • 图 1  研究区地形图

    Figure 1.  Topographic map of the study area

    图 2  万州区地质构造剖面图

    Figure 2.  Tectonic profiles of Wanzhou District

    图 3  研究区工程地质岩组剖面图(剖面位置见图 1)

    J1z.珍珠冲组;J1-2z.自流井组;J2x.新田沟组;J2xs.下沙溪庙组;T2b.巴东组;T3xj.须家河组

    Figure 3.  Profile of engineering geological rock groups in the study area

    图 4  历史岩质滑坡灾害航拍图

    a. 民国场滑坡滑动后斜坡复垦改造现状;b. 背垭口滑坡滑动堆积现状;c. 麦地坪滑坡

    Figure 4.  Aerial map of historical rockslides

    图 5  自流井组深灰色泥质页岩滑动面

    a.民国场滑坡后部揭露的滑面;b.背垭口滑坡后缘边界处出露的滑面

    Figure 5.  Sliding surfaces generated in the dark gray argillaceous shale in the Ziliujing Formation

    图 6  珍珠冲组中的泥化夹层

    a.泥化程度较高;b.泥化程度较低

    Figure 6.  Mud interlayer in the Zhenzhuchong Formation

    图 7  铁峰山背斜作用下的劈理组合及斜坡失稳模式

    Figure 7.  Cleavage combination and sliding mode of the translational rockslide under the effect of the Tiefengshan anticline

    图 8  研究区软弱夹层平面分布情况

    J1z.珍珠冲组;J1-2z.自流井组;J2x.新田沟组;J2xs.下沙溪庙组;T2b.巴东组;T3xj.须家河组

    Figure 8.  Distribution of weak interlayers in the study area

    图 9  研究区岩质斜坡单元划分

    Figure 9.  Rock slope units in the study area

    图 10  顺层岩质滑坡灾害易发性评价指标

    Figure 10.  Assessment indicators of the translational rockslide susceptibility

    图 11  斜坡单元下伏主要软弱夹层类型

    Figure 11.  Categories of weak interlayers under slope units

    图 12  软弱夹层垂向分布层位计算模型(蓝色虚线为地面线)

    此6图均为以岩层倾向方向所做的剖面图。剖面线穿过OAB 3点;O点为软弱夹层出露点;AB为地层上、下分界线;OCOD为高程差,记为ΔH、ΔH′ACDB为平面所测距离,记为LL′θ为真倾角;OEOF为所求距离,记为ll′

    Figure 12.  Calculating model of the vertical distribution of weak interlayers

    图 13  研究区软弱夹层垂向分布情况

    Figure 13.  Vertical distribution of weak interlayers in the study area

    图 14  道路开挖揭露软弱夹层情况分布图

    Figure 14.  Distribution of weak interlayers in slope units exposed by road cutting

    图 15  研究区顺层岩质滑坡灾害易发性分布图

    Figure 15.  Hazard susceptibility distribution diagram of translational rockslide in the study area

    图 16  研究区顺层岩质滑坡灾害易发性分布图(不考虑软弱夹层指标)

    Figure 16.  Hazard susceptibility distribution diagram of translational rockslide in the study area (The factors of the weak interlayer are not considered)

    表  1  软弱夹层平均厚度权重参数

    Table  1.   Weight parameters of average thickness of weak interlayers

    软弱夹层类型 平均厚度/m 权重
    自流井组 页岩 0.7 0.4
    0.4 0.3
    珍珠冲组 泥化夹层 0.3 0.2
    煤层 0.1 0.1
    下载: 导出CSV

    表  2  软弱夹层埋藏深度权重参数

    Table  2.   Weight parameters of buried depth of the weak interlayer

    深度范围/m 权重Wi
    [0, 10) 0.5
    [10, 20) 0.4
    [20, 30] 0.1
    下载: 导出CSV

    表  3  顺层岩质滑坡易发性指标

    Table  3.   Susceptibility indicators of translational rockslide

    评价指标 权重系数
    (考虑软弱夹层)
    权重系数
    (不考虑软弱夹层)
    三级指标 分值
    一级 二级
    地形地貌 坡型 0.0146 0.04 凹型 0.33
    直线型 0.67
    凸型 1.00
    平均坡度/(°) 0.023 6 0.064 7 <20 0.33
    [20, 25) 0.67
    [25, 30] 1.00
    临空面数量 0.0687 0.188 4 1 0.33
    2 0.67
    3 1.00
    河流侵蚀坡脚坡度/(°) 0.040 9 0.112 2 < 10 0.25
    [10, 20) 0.50
    [20, 30] 0.75
    >30 1.00
    斜坡结构 坡度与地层倾角比 0.018 8 0.051 6 < 1 0.33
    [1, 1.2] 0.67
    >1.2 1.00
    斜坡坡向与岩层层面夹角/(°) 0.028 2 0.077 3 >40 0.25
    [30, 40] 0.50
    [20, 30) 0.75
    <20 1.00
    控滑结构 30 m深度范围内软弱层贡献度/% 0.313 3 / < 20 0.2
    [20, 40) 0.4
    [40, 60) 0.6
    [60, 80] 0.8
    >80 1.0
    软弱层主要类型 0.134 3 / 煤线 0.33
    泥化层 0.67
    页岩层 1.00
    水文地质条件 汇水面积与单元面积之比 0.014 6 0.004 [0, 0.2) 0.25
    [0.2, 1) 0.50
    [1, 2] 0.75
    >2 1.00
    上覆岩层渗透性 0.048 3 0.132 4 小/泥页岩 0.33
    中/砂岩 0.67
    大/粉砂岩 1.00
    冲沟密度 0.026 6 0.072 9 [6, 8) 0.25
    [8, 10) 0.50
    [10, 12) 0.75
    [12, 14] 1.00
    人类工程活动 道路开挖切坡高度/m 0.080 4 0.220 5 < 5 0.25
    [5, 10) 0.50
    [10, 15] 0.75
    >15 1.00
    是否揭露软弱层 0.187 7 / 0
    1
    下载: 导出CSV
  • [1] 肖诗荣, 刘德富, 胡志宇. 世界三大典型水库型顺层岩质滑坡工程地质比较研究[J]. 工程地质学报, 2010, 18(1): 52-59. doi: 10.3969/j.issn.1004-9665.2010.01.007

    Xiao S R, Liu D R, Hu Z Y. Engineering geologic study of three actual dip bedding rockslides associated with reservoirs in the world[J]. Journal of Engineering Geology, 2010, 18(1): 52-59(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.01.007
    [2] 肖莉丽, 殷坤龙, 刘艺梁, 等. 高速库岸岩质滑坡运动过程及速度分析[J]. 地质科技情报, 2012, 31(4): 117-122. doi: 10.3969/j.issn.1009-6248.2012.04.010

    Xiao L L, Yin K L, Liu Y L, et al. Analysis of the velocity and process of high speed reservoir rockslide[J]. Geological Science and Technology Information, 2012, 31(4): 117-122(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2012.04.010
    [3] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 2010, 29(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm

    Yin Y P. Mechanism of apparent dip slide of inclined of bedding rockslide: A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 217-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm
    [4] Xue D, Li T, Zhang S, et al. Failure mechanism and stabilization of a basalt rock slide with weak layers[J]. Engineering Geology, 2018, 233: 213-224. doi: 10.1016/j.enggeo.2017.12.005
    [5] 李江, 许强, 王森, 等. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4053-4062. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm

    Li J, Xu Q, Wang S, et al. Research on rainfall infiltration models of slopes and formation mechanism of rock landslide in red stratum in the east of Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4053-4062(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm
    [6] 柴波, 殷坤龙, 陈丽霞, 等. 岩体结构控制下的斜坡变形特征[J]. 岩土力学, 2009, 30(2): 521-525. doi: 10.3969/j.issn.1000-7598.2009.02.041

    Chai B, Yin K L, Chen L X, et al. Analysis of slope deformation under control of rock mass structure[J]. Rock and Soil Mechanics. 2009, 30(2): 521-525(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.02.041
    [7] 黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101017.htm

    Huang S P, Yan E C, Yi X M, et al. Action law of geometrical characteristic parameters in the anti-dip rock slopes under different free face condition[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 159-165(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101017.htm
    [8] 谭明健, 周春梅, 孙东, 等. 软硬互层顺层岩质边坡破坏试验研究[J/OL]. 地质科技通报, 2021: 1-9[2021-12-02]. https://doi.org/10.19509/j.cnki.dzkq.2021.0096.

    Tan M J, Zhou C M, Sun D, et al. Model experimental study on failure of soft-hard alternant rock formation bedding slope and instability mechanism research[J]. Bulletin of Geological Science and Technology, 2021: 1-9[2021-12-02]. https://doi.org/10.19509/j.cnki.dzkq.2021.0096(in Chinese with English abstract).
    [9] 柴波, 殷坤龙, 李想. 巴东组岩石能量耗散规律的实验研究[J]. 工程地质学报, 2012, 20(6): 1013-1019. doi: 10.3969/j.issn.1004-9665.2012.06.014

    Chai B, Yin K L, Li X. Experimental study on rock energy dissipation of the middle triassi Badong Formation[J]. Journal of Engineering Geology, 2012, 20(6): 1013-1019(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2012.06.014
    [10] 秦四清. 斜坡失稳的突变模型与混沌机制[J]. 岩石力学与工程学报, 2000, 19(4): 486-492. doi: 10.3321/j.issn:1000-6915.2000.04.020

    Qing S Q. Nonlinear catastrophy model of slope instability and chaotic dynamics mechanism of slope ecolution process[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 486-492(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.020
    [11] 郑迎凯, 陈建国, 王成彬, 等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报, 2020, 39(6): 131-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006015.htm

    Zheng Y K, Chen J G, Wang C B, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City, Yunnan Province[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131-144(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006015.htm
    [12] 黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J/OL]. 地质科技通报: 1-12[2021-10-18]. https://doi.org/10.19509/j.cnki.dzkq.2021.0087.

    Huang F M, Hu S Y, Yan X Y, et al. Landslide susceptibility prediction and its main environmental factors identification based on machine learning models[J]. Bulletin of Geological Science and Technology: 1-12[2021-10-18]. https://doi.org/10.19509/j.cnki.dzkq.2021.0087(in Chinese with English abstract).
    [13] Erener A, Mutlu A, Düzgün H S. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis(MCDA), logistic regression(LR) and association rule mining(ARM)[J]. Engineering Geology, 2016, 203: 45-55. doi: 10.1016/j.enggeo.2015.09.007
    [14] Lee D, Kim Y, Lee S. Shallow landslide susceptibility models based on artificial neural networks considering the factor selection method and various non-linear activation functions[J]. Remote Sensing, 2020, 12(7): 1194. doi: 10.3390/rs12071194
    [15] Tsangaratos P, Ilia I. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size[J]. Catena, 2016, 145: 164-179. doi: 10.1016/j.catena.2016.06.004
    [16] 任杰. 含双软弱夹层顺层岩质滑坡的滑动模式及变形规律研究[D]. 太原: 太原理工大学, 2019.

    Ren J. Study on sliding mode and deformation law of bedding rock landslide with double weak interlayers[D]. Taiyuan University of Technology, 2019(in Chinese with English abstract).
    [17] 柴波, 殷坤龙. 三峡库区巴东新城区库岸三叠系巴东组层间软弱带[J]. 工程地质学报, 2009, 17(6): 809-816. doi: 10.3969/j.issn.1004-9665.2009.06.011

    Chai B, Yin K L. Interlayer weakness zones in Badong Formation of middle Triassic forming bank slopes of Three Gorges Reservoir in new Badong County[J]. Journal of Engineering Geology, 2009, 17(6): 809-816(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2009.06.011
    [18] 邹宗兴, 唐辉明, 熊承仁, 等. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报, 2012, 31(11): 2222-2231. doi: 10.3969/j.issn.1000-6915.2012.11.010

    Zhou Z X, Tang H M, Xiong C R, et al. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2222-2231(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.11.010
    [19] He K, Ma G, Hu X. Formation mechanisms and evolution model of the tectonic-related ancient giant basalt landslide in Yanyuan County, China[J]. Natural Hazards, 2021, 106(3): 2575-2597. doi: 10.1007/s11069-021-04555-6
    [20] Jiang J, Xiang W, Rohn J, et al. Research on water-rock(soil) interaction by dynamic tracing method for Huangtupo landslide, Three Gorges Reservoir, PR China[J]. Environmental Earth Sciences, 2015, 74(1): 557-571. doi: 10.1007/s12665-015-4068-5
    [21] Tannant D D, Giordan D, Morgenroth J. Characterization and analysis of a translational rockslide on a stepped-planar slip surface[J]. Engineering Geology, 2017, 220: 144-151. doi: 10.1016/j.enggeo.2017.02.004
    [22] Carla T, Gigli G, Lombardi L, et al. Monitoring and analysis of the exceptional displacements affecting debris at the top of a highly disaggregated rockslide[J]. Engineering Geology, 2021, 294: 106345. https://www.sciencedirect.com/science/article/pii/S0013795221003562
    [23] Furuki H, Chigira M. Structural features and the evolutionary mechanisms of the basal shear zone of a rockslide[J]. Engineering Geology, 2019, 260: 105214. https://www.sciencedirect.com/science/article/pii/S0013795219310622
    [24] Dou J, Yunus A P, Bui D T, et al. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan[J]. Landslides, 2020, 17(3): 641-658. doi: 10.1007/s10346-019-01286-5
    [25] Regmi A D, Devkota K C, Yoshida K, et al. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya[J]. Arabian Journal of Geosciences, 2014, 7(2): 725-742.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  607
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06

目录

    /

    返回文章
    返回