Rainfall erosion characteristics of argillaceous sandstone residual soil slopes
-
摘要: 泥质砂岩残积土作为一种结构性很强的特殊土, 具有崩解性强、抗冲蚀性差以及扰动性极大的特点, 对工程建设有较大影响。为了探究泥质砂岩残积土边坡降雨冲刷机理, 设计了边坡降雨冲刷试验, 通过现场三维激光扫描技术测试分析了其表面冲刷效应; 利用高密度电法进一步明确了泥质砂岩残积土边坡的入渗特性、表面冲刷演化机制及冲刷破坏机理。结果表明: 冲刷试验的最初阶段, 降水入渗强且主要向坡脚处运移, 坡表未形成明显的细沟; 冲刷试验中期, 坡脚处土体最先达到饱和而形成坡面径流, 细沟贯通扩大形成小规模冲槽以及片蚀区; 冲刷试验后期, 坡面中部和坡脚处土体冲蚀严重, 坡脚处的冲槽向上部延伸, 片蚀区扩大, 导致表层土体结构发生变化, 渗透性差异明显; 泥质砂岩残积土坡体降雨冲刷主要划分为表层溅蚀、下层潜蚀和细沟贯通3个阶段, 坡面土体流失主要发生在最后一个阶段, 细沟率达到最高值16.9%, 细沟贯通率也高达0.74。研究结果可以为深入探讨泥质砂岩残积土边坡冲蚀防护和研究冲蚀防护机理提供基础资料。Abstract: As a special soil with a strong structure, argillaceous sandstone residual soil has the characteristics of strong disintegration, poor erosion resistance and great disturbance, it has great influence on the engineering construction. To explore the mechanism of rainfall erosion of argillaceous sandstone residual soil slopes, a slope rainfall erosion test is designed. The surface erosion effect is analysed by 3D laser scanning technology on site. The infiltration characteristics, surface brush evolution mechanism and erosion failure mechanism of argillaceous sandstone residual soil slopes are further clarified by using a high-density electrical method. The results show that in the initial stage of the experiment, the precipitation was highly permeable and mainly migrated to the foot of the slope, and no obvious rills were formed on the surface of the slope. In the middle period of the erosion test, the soil at the foot of the slope reached saturation first, and slope runoff was formed, and the rill expanded to form small-scale erosion chutes and chip erosion areas.In the later stage of the test, the soil erosion in the middle of the slope and at the foot of the slope was serious. The upwards part of the channel at the foot of the slope extended, and the erosion area expanded, which led to the structural change in the surface soil, and the permeability difference was obvious. The rainfall erosion of argillaceous sandstone residual soil slope was mainly divided into three parts. The soil loss of slope mainly occurred in the last stage, with a maximum rill rate of 16.9% and gully connectivity of up to 0.74.
-
图 8 高密度电法测试结果(各状态同表 2)
a.状态一(测线1);b.状态一(测线2);c.状态二(测线1);d.状态二(测线2);e.状态三(测线1);f.状态三(测线2); g.状态四(测线1);h.状态四(测线2);i.状态五(测线1);j.状态五(测线2);k.状态六(测线1);l.状态六(测线2); m.状态七(测线1);n.状态七(测线2);o.状态八(测线1);p.状态八(测线2);q.状态九(测线1);r.状态九(测线2); s.状态十(测线1);t.状态十(测线2);u.状态十一(测线1);v.状态十一(测线2)
Figure 8. Test results of the high density electrical method
表 1 泥质砂岩残积土物理性质
Table 1. Physical properties of argillaceous sandstone residual soil
物理性质 参数 相对密度 2.72 天然密度/(g·cm-3) 1.89 天然含水率/% 17.5 标准击实试验: 最大干密度/(g·cm-3) 1.86 最优含水率/% 12 颗分试验:wB/% 粗砂 18.4 中沙 23.5 细砂 8.5 粉砂 20.7 黏土 28.9 表 2 模拟降雨及试验测试设计
Table 2. Simulated rainfall and experimental test design
测试状态 降雨累计时长/h 测试内容 状态一(初始) 0 电法、三维激光扫描 状态二(降雨) 2 电法 状态三(入渗) 2 电法、三维激光扫描 状态四(降雨) 4 电法 状态五(降雨) 6 电法 状态六(入渗) 6 电法、三维激光扫描 状态七(降雨) 8 电法 状态八(降雨) 10 电法、三维激光扫描 状态九(降雨) 11 电法 状态十(降雨) 12.5 电法、三维激光扫描 状态十一(入渗) 12.5 电法、三维激光扫描 -
[1] 肖景红, 王敏, 王川, 等. 含优势渗流层边坡降雨入渗下的可靠度分析[J]. 地质科技通报, 2021, 40(6): 193-204. doi: 10.19509/j.cnki.dzkq.2021.0619Xiao J H, Wang M, Wang C, et al. Reliability analysis of slope with dominant seepage interlayer under rainfall infiltration[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 193-204(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0619 [2] 蒋先平, 张鹏, 卢艺伟, 等. 物质点强度折减法边坡失稳判据选择方法[J]. 地质科技通报: 1-10[2021-10-22]. http://kns.cnki.net/kcms/detai/42.1904.p.20211019.1142.006.html.Jiang X P, Zhang P, Lu Y W, et al. Slope failure criteria of material point strength reduction method[J]. Bulletin of Geological Science and Technology: 1-10[2021-10-22]. http://kns.cnki.net/kcms/detai/42.1904.p.20211019.1142.006.html(in Chinese with English abstract). [3] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108Li C D, Long J J, Jiang Q H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108 [4] 汤兰. 花岗岩残积土边坡冲蚀特性室内模拟试验研究[D]. 长沙: 长沙理工大学, 2017.Tang L. Simulation experiment research on the granite residual soil slope erosion characteristics in laboratory[D]. Changsha: Changsha University of Science & Technology, 2017(in Chinese with English abstract). [5] 郑晓栩. 厦门地区花岗岩残积土降雨滑坡模拟试验及土体破坏细观演变规律研究[D]. 福建厦门: 厦门大学, 2014.Zheng X X. Study on Rainfall landslide simulation experiment and meso evolution of soil failure of granite residual soils in Xiamen, area[D]. Xiamen, Fujian: Xiamen University, 2014(in Chinese with English abstract). [6] 邓百洪, 赵旭, 龙志东. 花岗岩残积土边坡冲刷模拟试验研究[J]. 公路与汽运, 2019(1): 88-92. doi: 10.3969/j.issn.1671-2668.2019.01.022Deng B H, Zhao X, Long Z D. Study on erosion simulation of granite residual soil slope[J]. Highways and Automotive Applications, 2019(1): 88-92(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2668.2019.01.022 [7] Liu W P, Song J X, Luo J, et al. The processes and mechanisms of collapsing erosion for granite residual soil in southern China[J]. Journal of Soils and Sediments, 2020, 20(2): 992-1002. doi: 10.1007/s11368-019-02467-4 [8] Liu W P, Ouyang G Q, Luo X Y, et al. Moisture content, pore-water pressure and wetting front in granite residual soil during collapsing erosion with varying slope angle[J]. Geomorphology, 2020, 362: 107210. doi: 10.1016/j.geomorph.2020.107210 [9] Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[J]. Power Technology, 1993, 77(1): 79-87. doi: 10.1016/0032-5910(93)85010-7 [10] 宋朋燃. 黄土边坡冲刷破坏特征及数值模拟[D]. 长春: 吉林大学, 2013.Song P R. The erosion damage characteristics and numerical simulation of loess slope[D]. Changchun: Jilin University, 2014(in Chinese with English abstract). [11] 吴谦, 王常明, 宋朋燃, 等. 黄土陡坡降雨冲刷试验及其三维颗粒流流-固耦合模拟[J]. 岩土力学, 2014, 35(4): 977-985. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404010.htmWu Q, Wang C M, Song P R, et al. Rainfall erosion experiment for steep loess slope and fluid-soil coupling simulation with PFC3D[J]. Rock and Soil Mechanics, 2014, 35(4): 977-985(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404010.htm [12] 柯云斌, 符元帅, 阙云, 等. 降雨诱发残积土陡坡坡面冲刷破坏颗粒流模拟[J]. 济南大学学报: 自然科学版, 2019, 33(5): 453-459. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201905011.htmKe Y B, Fu Y S, Que Y, et al. Particle flow simulation for scour and failure of residual soil steep slopes induced by rainfall[J]. Journal of University of Jinan: Science and Technology Edition, 2019, 33(5): 453-459(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201905011.htm [13] Li L P, Lan H X, Peng J B. Loess erosion patterns on a cut-slope revealed by LiDAR scanning[J]. Engineering Geology, 2020, 268: 105516. doi: 10.1016/j.enggeo.2020.105516 [14] Jiang Y M, Shi H J, Wen Z M, et al. The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions[J]. Geomorphology, 2020, 350: 106893. doi: 10.1016/j.geomorph.2019.106893 [15] 蒋林城. 高密度电阻率法分辨率影响因素研究及应用[D]. 成都: 成都理工大学, 2018.Jiang L C. Research on the influencing factors of resolution of high density resistivity method and its application[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract). [16] 白旸, 冯兵, 张继锋. 高密度电法在陕西泾阳地区黄土台塬地下水位探测中的应用[J]. 地球科学与环境学报, 2020, 42(6): 791-800. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006011.htmBai Y, Feng B, Zhang J F. Application of multi-electrode resistivity method in groundwater level detection in loess tableland of Jingtang area, Shanxi, China[J]. Journal of Earth Science and Environment, 2020, 42(6): 791-800(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006011.htm [17] 陈斌, 汪耀, 胡祥云, 等. 大湾区珠江口海上高密度电法探测[J]. 地球科学, 2020, 45(12): 4550-4562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012018.htmChen B, Wang Y, Hu X Y, et al. Marine electrical resistivity tomography research in pearl river estuary of greater bay area[J]. Earth Science, 2020, 45(12): 4550-4562(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012018.htm [18] 闫亚景, 闫永帅, 赵贵章, 等. 基于高密度电法的天然边坡水分运移规律研究[J]. 岩土力学, 2019, 40(7): 2807-2814. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907036.htmYan Y J, Yan Y S, Zhao G Z, et al. Study on moisture migration in natural slope using high-density electrical resistivity tomography method[J]. Rock and Soil Mechanics, 2019, 40(7): 2807-2814(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907036.htm [19] 焦如义. 高密度电法在水平定向钻穿越孔壁稳定性检测中的应用[J]. 地质科技情报, 2016, 35(2): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602025.htmJiao R Y. Feasibility study on borehole collapse detection of HDD by high density electrical method[J]. Geological Science and Technology Information, 2016, 35(2): 108-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602025.htm [20] 樊炳森, 郭成超. 高密度电法在水库渗漏检测中的应用[J]. 长江科学院院报, 2019, 36(10): 165-168. doi: 10.11988/ckyyb.20190940Fan B S, Guo C C. Application of high density resistivity method to reservoir leakage inspection[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 165-168(in Chinese with English abstract). doi: 10.11988/ckyyb.20190940 [21] 王冬青. 高密度电阻率成像法在断裂带探测中的应用研究[D]. 南京: 南京大学, 2013.Wang D Q. A study on faults detection using electrical resistivity tomography method[D]. Nanjing: Nanjing University, 2013(in Chinese with English abstract). [22] 李泽邦. 基于三维激光扫描技术在矿山采空区边坡变形监测中的应用研究[D]. 昆明: 昆明理工大学, 2018.Li Z B. Application research of slope deformation monitoring in mined-out area based on 3D laser scanning technology[D]. Kunming: Kunming University of Science & Technology, 2018(in Chinese with English abstract).