Laboratory experiment on the influence of constraint conditions on landslide-generated waves
-
摘要: 水库滑坡约束条件影响其运动过程的几何形态, 是滑坡涌浪预测的重要参数之一。为了探究约束条件对滑坡涌浪特征(波高、波幅与周期)的影响, 采用正交试验设计法开展了54组滑坡涌浪室内模型试验, 并基于统计学理论对约束散体和半约束散体的涌浪特征进行了分析。结果表明: 涌浪波周期基本不受滑体约束条件的影响; 而半约束散体模型的波高和波幅小于约束散体的波高和波幅, 半约束散体的初始涌浪波高约为约束散体的0.95倍, 半约束散体模型的最大波峰波幅约为约束散体模型的0.9倍。因此, 在开展滑坡涌浪快速预测时, 虽然滑体入水形态与破坏前形态差异巨大, 但基于滑坡初始几何形态参数对其初始涌浪波高和最大涌浪波幅的预测结果是偏安全的。研究结论可以为更准确地预测水库滑坡涌浪提供理论依据。Abstract: The constraint conditions have a great influence on the geometry of reservoir landslides during mass movement and are one of the most important parameters for predicting landslide-generated waves. To explore the effects of constraint conditions on the characteristics of landslide-generated waves (such as wave height, amplitude and period), 54 sets of landslide-generated wave physical model experiments based on the orthogonal experimental design method were conducted in this paper. Furthermore, the wave characteristics under constrained and semiconstrained conditions were analysed using statistical methods. The results indicate that the wave period is basically unaffected by the constraint conditions, while the wave height and amplitude of the semiconstrained model are smaller than those of the constrained model, the initial wave height of the semiconstrained model is approximately 0.95 times higher than that of the constrained model, and the maximum amplitude of the semiconstrained model is approximately 0.9 times that of the constrained model. Therefore, it is safer to predict the initial wave height and maximum amplitude by using the geometric parameters before failure, although the geometry of the landslide has been greatly changed from its original state.This study can provide a theoretical basis for landslide-tsunamis prediction.
-
Key words:
- constraint condition /
- wave period /
- wave height /
- wave amplitude /
- landslide-generated wave
-
图 1 试验设置现场图[23]
Figure 1. Site diagram of the experimental device
表 1 散体材料相关参数
Table 1. Related parameters of granular material
粒径
d/mm表观密度
ρ/(g·cm-3)堆积密度
ρs/(g·cm-3)孔隙率
n/%渗透系数
k/(m·s-1)3~5 2.92 1.51 48.67 0.20 8~12 2.79 1.49 46.68 1.26 15~25 2.44 1.45 39.40 12.57 表 2 正交试验因素水平表
Table 2. Factor level table of the orthogonal test
因素水平 l/cm w/cm s/cm v/(m·s-1) 1 20 20 5 1.0 2 30 30 10 1.5 3 40 40 / 2.0 注:l.滑坡长度;w.滑坡宽度;s.滑坡厚度;v.滑坡速度;下同 表 3 涌浪试验方案设计表
Table 3. Details of the wave test scheme design
约束条件 粒径d=3~5 mm 粒径d=8~12 mm 粒径d=15~25 mm l/cm w/cm s/cm v/(m·s-1) l/cm w/cm s/cm v/(m·s-1) l/cm w/cm s/cm v/(m·s-1) 约束 20 20 5 1.0 20 20 5 1.0 20 20 5 1.0 20 30 10 1.5 20 30 10 1.5 20 30 10 1.5 20 40 5 2.0 20 40 5 2.0 20 40 5 2.0 30 20 5 1.5 30 20 5 1.5 30 20 5 1.5 30 30 5 2.0 30 30 5 2.0 30 30 5 2.0 30 40 10 1.0 30 40 10 1.0 30 40 10 1.0 40 20 10 2.0 40 20 10 2.0 40 20 10 2.0 40 30 5 1.0 40 30 5 1.0 40 30 5 1.0 40 40 5 1.5 40 40 5 1.5 40 40 5 1.5 半约束 20 20 5 1.0 20 20 5 1.0 20 20 5 1.0 20 30 10 1.5 20 30 10 1.5 20 30 10 1.5 20 40 5 2.0 20 40 5 2.0 20 40 5 2.0 30 20 5 1.5 30 20 5 1.5 30 20 5 1.5 30 30 5 2.0 30 30 5 2.0 30 30 5 2.0 30 40 10 1.0 30 40 10 1.0 30 40 10 1.0 40 20 10 2.0 40 20 10 2.0 40 20 10 2.0 40 30 5 1.0 40 30 5 1.0 40 30 5 1.0 40 40 5 1.5 40 40 5 1.5 40 40 5 1.5 -
[1] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001009.htmLi C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001009.htm [2] 杨背背, 殷坤龙, 梁鑫, 等. 三峡库区麻柳林滑坡变形特征及演化模拟[J]. 地质科技通报, 2020, 39(2): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002014.htmYang B B, Yin K L, Liang X, et al. Deformation characteristics and evolution simulation of the Maliulin landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 122-129(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002014.htm [3] 廖秋林, 李晓, 李守定, 等. 三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究[J]. 岩石力学与工程学报, 2005, 24(17): 3146-3153. doi: 10.3321/j.issn:1000-6915.2005.17.023Liao Q L, Li X, Li S D, et al. Occurrence, geology and geomorphy characteristics and origin of qianjiangping landslide in three gorges reservoir area and study on ancient landslide criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3146-3153(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.023 [4] Huang B, Yin Y, Wang S, et al. A physical similarity model of an impulsive wave generated by Gongjiafang landslide in Three Gorges Reservoir, China[J]. Landslides, 2014, 11(3): 513-525. doi: 10.1007/s10346-013-0453-x [5] Huang B L, Yin Y P, Du C L. Risk management study on impulse waves generated by Hongyanzi landslide in Three Gorges Reservoir of China on June 24, 2015[J]. Landslides, 2016, 13(3): 603-616. doi: 10.1007/s10346-016-0702-x [6] 韩林峰, 王平义, 牟萍, 等. 滑坡涌浪近场波特性研究综述[J]. 武汉大学学报: 工学版, 2021, 54(6): 477-487. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202106001.htmHan L F, Wang P Y, Mu P, et al. Review of near-field characteristics of impulse waves generated by landslides[J]. Engineering Journal of Wuhan University, 2021, 54(6): 477-487(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202106001.htm [7] 朱冬雪, 许强, 李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(1): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htmZhu D X, Xu Q, Li S L. Genetic types and geological features of large scale and extra-large scale layered landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 158-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002019.htm [8] Evers F, Hager W. Impulse wave generation: Comparison of Free Granular with Mesh-Packed Slides[J]. JMSE, 2015, 3(1): 100-110. doi: 10.3390/jmse3010100 [9] Heller V, Spinneken J. Improved landslide-tsunami prediction: Effects of block model parameters and slide model[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1489-1507. doi: 10.1002/jgrc.20099 [10] Viroulet S, Cébron D, Kimmoun O, et al. Shallow water waves generated by subaerial solid landslides[J]. Geophysical Journal International, 2013, 193(2): 747-762. doi: 10.1093/gji/ggs133 [11] Viroulet S, Sauret A, Kimmoun O. Tsunami generated by a granular collapse down a rough inclined plane[J]. EPL(Europhysics Letters), 2014, 105(3): 34004. doi: 10.1209/0295-5075/105/34004 [12] Panizzo A, De Girolamo P, Petaccia A. Forecasting impulse waves generated by subaerial landslides[J]. Journal of Geophysical Research: Oceans, 2005, 110: C12025. doi: 10.1029/2004JC002778 [13] DeCapio V P. Experimental study of landslide generated water waves[M]. [S. l. ]: Cornell University, Jan., 2007. [14] Yavari-Ramshe S, Ataie-Ashtiani B. On the effects of landslide deformability and initial submergence on landslide-generated waves[J]. Landslides, 2019, 16(1): 37-53. doi: 10.1007/s10346-018-1061-6 [15] Meng Z, Ancey C. The effects of slide cohesion on impulse-wave formation[J]. Experiments in Fluids, 2019, 60(10): 1-14. [16] 吴长虹, 江兴元, 杨义, 等. 散体滑坡涌浪形成与传播的物理模拟试验研究[J/OL]. 长江科学院院报, 2021: 1-7[2022-02-25]. http://kns.cnki.net/kcms/detail/42.1171.TV.20211007.1907.002.html.Wu C H, Jiang X Y, Yang Y, et al. Experimental study on the generation and propagation of impulse wave generated by granular landslide[J/OL]. Journal of Yangtze River Scientific Research Institute, 2021: 1-7[2022-02-25]. http://kns.cnki.net/kcms/detail/42.1171.TV.20211007.1907.002.html(in Chinese with English abstract). [17] 任坤杰, 韩继斌. 散体滑坡体首浪高度模型试验研究[J]. 人民长江, 2011, 42(24): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201124023.htmRen K J, Han J B. Experimental research on primary wave height generated by loose earth landslide[J]. Yangtze River, 2011, 42(24): 69-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201124023.htm [18] 任坤杰, 韩继斌, 陆虹. 滑坡涌浪首浪高度试验研究[J]. 人民长江, 2012, 43(2): 43-45, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201202014.htmRen K J, Han J B, Lu H, Experimental research on primary wave height generated by solid- type landslide[J]. Yangtze River, 2012, 43(2): 43-45, 61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201202014.htm [19] Rzadkiewicz S A, Mariotti C, Heinrich P. Modelling of submarine landslides and generated water waves[J]. Physics and Chemistry of the Earth, 1996, 21(1/2): 7-12. [20] Davidson D D, Whalin R W. Potential Landslide-generated water waves, Libby Dam and Lake Koocanusa, Montana: Hydraulic Model Investigation[M]. [S. l. ]: Waterways Experiment Station, 1974. [21] Evers F M, Hager W H, Boes R M. Spatial impulse wave generation and propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2019, 145(3): 04019011. doi: 10.1061/(ASCE)WW.1943-5460.0000514 [22] Meng Z, Hu Y, Ancey C. Using a data driven approach to predict waves generated by gravity driven mass flows[J]. Water, 2020, 12(2): 600. doi: 10.3390/w12020600 [23] 方仕达, 汪洋, 霍志涛, 等. 水深对水库滑坡涌浪传播规律影响的试验研究[J]. 安全与环境工程, 2021, 28(5): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202105013.htmFang S D, Wang Y, Huo Z T, et al. Experimental study on the effect of water depth on propagation of landslide-generated impulse waves[J]. Safety and Environmental Engineering, 2021, 28(5): 96-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202105013.htm