留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强震作用下斜坡表面放大效应的三维离散元模拟

蔡国军 陈锡锐 孙文鹏 贾俊

蔡国军, 陈锡锐, 孙文鹏, 贾俊. 强震作用下斜坡表面放大效应的三维离散元模拟[J]. 地质科技通报, 2022, 41(2): 104-112. doi: 10.19509/j.cnki.dzkq.2022.0058
引用本文: 蔡国军, 陈锡锐, 孙文鹏, 贾俊. 强震作用下斜坡表面放大效应的三维离散元模拟[J]. 地质科技通报, 2022, 41(2): 104-112. doi: 10.19509/j.cnki.dzkq.2022.0058
Cai Guojun, Chen Xirui, Sun Wenpeng, Jia Jun. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 104-112. doi: 10.19509/j.cnki.dzkq.2022.0058
Citation: Cai Guojun, Chen Xirui, Sun Wenpeng, Jia Jun. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 104-112. doi: 10.19509/j.cnki.dzkq.2022.0058

强震作用下斜坡表面放大效应的三维离散元模拟

doi: 10.19509/j.cnki.dzkq.2022.0058
基金项目: 

地质灾害防治与地质环境保护国家重点实验室自主研究课题 SKLGP2019Z017

自然资源部中国地质调查局地质调查项目 DD20190714

国家自然科学基金青年基金项目 41202209

国家自然科学基金项目 41977255

四川省科技计划 2019YJ0403

详细信息
    作者简介:

    蔡国军(1982—),男,高级实验师,主要从事地质工程与岩土工程方面的研究工作。E-mail:caiguojun@cdut.cn

    通讯作者:

    陈锡锐(1997—),男,现正攻读地质工程专业硕士学位,主要从事地质工程与岩土工程方面的研究工作。E-mail:719039252@qq.com

  • 中图分类号: P642.22

Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes

  • 摘要: 为研究强震作用下斜坡表面的动力放大效应, 以陕西勉县某岩质斜坡为例, 建立了三维模型。运用离散元软件3DEC, 模拟了动力条件下斜坡的变形失稳过程, 分析了斜坡表面的动力响应特征, 研究了不同地震波输入工况条件下坡体表面动力响应差异。研究结果表明: 考虑地震纵波的影响时, 竖向加速度得到显著增强, 坡面的PGA放大系数增强了约1.62倍; 坡面形态强烈影响着斜坡表面的动力响应特征, 强震作用下, 斜坡坡肩及坡形转折处的放大效应均十分强烈, 凸出部位次之, 坡表两侧的放大效应最弱; 不同输入工况下, 斜坡坡形转折处的水平向PGA放大系数均维持较高值, 特别是在仅输入水平向加速度的条件下, 该部位在地震滑坡灾害预防中应特别注意; 强震作用下滑坡的运动过程可概括为滑坡孕育启动阶段—挤压碰撞高速运动阶段—堆积阶段。研究成果可为该地区防灾减灾工作提供一定理论支持。

     

  • 图 1  斜坡全貌图

    a.斜坡平面图; b.无人机航拍影像图

    Figure 1.  Overall view of the slope

    图 2  斜坡A-A′剖面图

    Figure 2.  Section view of slope A-A′

    图 3  模型建立过程

    Figure 3.  Process of model building

    图 4  坡表监测点布置

    Figure 4.  Layout of monitoring point of the slope surface

    图 5  卧龙波加速度记录数据(Acc(max)为峰值加速度)

    Figure 5.  Record data of Wolong wave acceleration

    图 6  两向加速度同时输入工况下坡面动力响应云图

    Figure 6.  Cloud map of the dynamic response of the two-way acceleration input into the slope simultaneously

    图 7  仅水平向加速度输入工况下坡面动力响应云图

    Figure 7.  Cloud map of the dynamic response of the horizontal acceleration input into slope

    图 8  近场工况下坡表放大效应(图中数字对应图 4中的监测点号)

    Figure 8.  Acceleration coefficient curve of the slope surface

    图 9  滑坡运动过程模拟

    Figure 9.  Simulation of the landslide movement process

    图 10  A-A′剖面滑坡运动位移云图

    Figure 10.  A-A′s section landslide movement displacement cloud map

    图 11  坡面放大系数分布直方图

    Figure 11.  Histogram of the distribution of the slope magnification effect

    表  1  岩体材料参数

    Table  1.   Material parameters of rock mass

    岩体及结构面 抗拉强度/MPa 弹性模量/MPa 泊松比 黏聚力/MPa 内摩擦角/(°) 法向刚度/GPa 切向刚度/GPa
    基岩 0.7 2 685 0.26 1.65 30
    滑体 0.2 2 570 0.24 0.85 15
    J1、J2 0.65 15 1.8 1.3
    J3、J4 0.88 16 2.0 1.6
    下载: 导出CSV
  • [1] 张倬元. 工程地质分析原理[M]. 北京: 地质出版社, 2016.

    Zhang Z Y. Principles of engineering geological analysis[M]. Beijing: Geological Publishing House, 2016(in Chinese).
    [2] 杨国香, 伍法权, 董金玉, 等. 地震作用下岩质边坡动力响应特性及变形破坏机制研究[J]. 岩石力学与工程学报, 2012, 31(4): 696-702. doi: 10.3969/j.issn.1000-6915.2012.04.008

    Yang G X, Wu F Q, Dong J Y, et al. Study on the dynamic response characteristics and deformation failure mechanism of rock slopes under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 696-702(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.04.008
    [3] 黄润秋, 李果, 巨能攀. 层状岩体斜坡强震动力响应的振动台试验[J]. 岩石力学与工程学报, 2013, 32(5): 865-875. doi: 10.3969/j.issn.1000-6915.2013.05.003

    Huang R Q, Li G, Ju N P. Shaking table test of strong vibration response of layered rock mass slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 865-875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.05.003
    [4] 巨能攀, 邓天鑫, 李龙起, 等. 强震作用下陡倾顺层斜坡倾倒变形机制离心振动台试验[J]. 岩土力学, 2019, 40(1): 99-108, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901007.htm

    Ju N P, Deng T X, Li L Q, et al. Centrifugal shaking table test on the dumping deformation mechanism of steeply inclined bedding slopes under strong earthquakes[J]. Rock and Soil Mechanics, 2019, 40(1): 99-108, 117(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901007.htm
    [5] 黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. doi: 10.19509/j.cnki.dzkq.2021.0111

    Huang S P, Yan E C, Yin X M, et al. Influence law of geometric characteristic parameters of toppling deformation of layered anti-dip rock slope with different air-side conditions[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 159-165(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0111
    [6] 杨背背, 殷坤龙, 梁鑫, 等. 三峡库区麻柳林滑坡变形特征及演化模拟[J]. 地质科技通报, 2020, 39(2): 122-129. doi: 10.19509/j.cnki.dzkq.2020.0213

    Yang B B, Yin K L, Liang X, et al. Deformation characteristics and evolution simulation of the Malulin landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 122-129(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0213
    [7] 吴益平, 卢里尔, 薛阳. 基于临界状态的边坡渐进破坏力学模型分析及应用[J]. 地质科技通报, 2020, 39(5): 1-7. doi: 10.19509/j.cnki.dzkq.2020.0501

    Wu Y P, Lu L E, Xue Y. Application of landslide progressive failure mechanical model based on the critical stress state[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 1-7(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0501
    [8] 郑颖人, 叶海林, 黄润秋. 地震边坡破坏机制及其破裂面的分析探讨[J]. 岩石力学与工程学报, 2009, 28(8): 1714-1723. doi: 10.3321/j.issn:1000-6915.2009.08.024

    Zheng Y R, Ye H L, Huang R Q. Analysis and discussion on the failure mechanism and fracture surface of seismic slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1714-1723(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.08.024
    [9] 曹琰波, 戴福初, 许冲, 等. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2878-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm

    Cao Y B, Dai F C, Xu C, et al. Discrete element simulation of deformation mechanism of Tangjiashan landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2878-2887(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
    [10] 崔芳鹏, 胡瑞林, 殷跃平, 等. 纵横波时差耦合作用的斜坡崩滑效应离散元分析: 以北川唐家山滑坡为例[J]. 岩石力学与工程学报, 2010, 29(2): 319-327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002015.htm

    Cui F P, Hu R L, Yin Y P, et al. Discrete element analysis of slope avalanche-slip effect coupled with time difference of vertical and horizontal waves: Taking Beichuan Tangjiashan landslide as an example[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 319-327(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002015.htm
    [11] 赵伟华, 黄润秋, 赵建军, 等. 强震条件下碎裂岩体崩塌机理及崩塌后壁对堆积体稳定性影响研究[J]. 工程地质学报, 2011, 19(2): 205-212. doi: 10.3969/j.issn.1004-9665.2011.02.010

    Zhao W H, Huang R Q, Zhao J J, et al. Study on the collapse mechanism of the cataclastic rock mass and the influence of the collapsed wall on the stability of the deposit under strong earthquake conditions[J]. Journal of Engineering Geology, 2011, 19(2): 205-212(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2011.02.010
    [12] 李龙起, 张帅, 何川, 等. 基于离散元技术的软硬互层斜坡动力响应及失稳机理研究[J]. 水利水电技术, 2020, 51(4): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202004024.htm

    Li L Q, Zhang S, He C, et al. Research on the dynamic response and instability mechanism of soft and hard interbedded slopes based on discrete element technology[J]. Water Resources and Hydropower Technology, 2020, 51(4): 203-211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202004024.htm
    [13] 言志信, 史盛, 党冰, 等. 地震作用下坡面形态对岩质边坡稳定性的影响[J]. 山东科技大学学报: 自然科学版, 2013, 32(2): 43-48, 78. doi: 10.3969/j.issn.1672-3767.2013.02.006

    Yan Z X, Shi S, Dang B, et al. The influence of slope shape on the stability of rock slope under earthquake action[J]. Journal of Shandong University of Science and Technology: Natural Science Edition, 2013, 32(2): 43-48, 78(in Chinese with English abstract). doi: 10.3969/j.issn.1672-3767.2013.02.006
    [14] 王多军, 裴向军, 宋金龙. 地震作用下顺层岩质边坡变形破坏坡面效应[J]. 公路, 2012(8): 12-16. doi: 10.3969/j.issn.0451-0712.2012.08.003

    Wang D J, Pei X J, Song J L. Slope effect of deformation and failure of bedding rock slope under earthquake[J]. Highway, 2012(8): 12-16(in Chinese with English abstract). doi: 10.3969/j.issn.0451-0712.2012.08.003
    [15] Xu X W, Wen X Z, Yu G H, et al. Coseismic reverse- and oblique-slip surface fault-ing generated by the 2008 MW7.9 Wenchuan Earthquake, China[J]. Geology, 2009, 37(6): 515-518. doi: 10.1130/G25462A.1
    [16] Zhang P Z, Wen X Z, Shen Z K, et al. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan Earthquake of May 12, 2008, Sichuan, China[J]. Ann. Rev. Earth Planet. Sci., 2010, 38: 353-382.
    [17] 王明明. 汉中盆地发育机制及构造演化研究[D]. 北京: 中国地震局地质研究所, 2013: 4-8.

    Wang M M. Research on the development mechanism and tectonic evolution of the Hanzhong Basin[D]. Beijing: Institute of Geology, China Earthquake Administration, 2013: 4-8(in Chinese with English abstract).
    [18] Itasca Consulting Group, Inc. USA. 3DEC 3 dimensional distinct element code, version3.0, user's manual[M]. : Itasca Consulting Group, Inc. USA., 2005.
    [19] 蔡国军, 陈锡锐, 尹保国, 等. 岩体力学参数对反倾边坡稳定性影响的数值模拟研究[J]. 人民珠江, 2020, 41(9): 25-31. doi: 10.3969/j.issn.1001-9235.2020.09.004

    Cai G J, Chen X R, Yin B G, et al. Numerical simulation study on the influence of rock mass mechanical parameters on the stability of anti-dipping slopes[J]. People's Pearl River, 2020, 41(9): 25-31(in Chinese with English abstract). doi: 10.3969/j.issn.1001-9235.2020.09.004
    [20] Bertero V, Mahin S, Herrera R. Aseismic design implications of near-fault San Fernando Earthquake records[J]. Earthquake Engineering and Structural Dynamics, 1978, 6(1): 31-42. doi: 10.1002/eqe.4290060105
    [21] Kuhlemeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(5): 421-417. doi: 10.1061/JSFEAQ.0001885
    [22] 庄建琦, 崔鹏, 葛永刚, 等. 5·12汶川地震崩塌滑坡分布特征及影响因子评价: 以都江堰至汶川公路沿线为例[J]. 地质科技情报, 2009, 28(2): 16-22. doi: 10.3969/j.issn.1000-7849.2009.02.004

    Zhuang J Q, Cui P, Ge Y G, et al. Distribution characteristics and influencing factors evaluation of collapse and landslides during the 5·12 Wenchuan Earthquake: Taking the Dujiangyan-Wenchuan highway as an example[J]. Geological Science and Technology Information, 2009, 28(2): 16-22(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2009.02.004
    [23] 顾金, 王运生, 曹文正, 等. 1786年磨西地震烂田湾滑坡形成机制及过程[J]. 山地学报, 2016, 34(5): 520-529. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201605003.htm

    Gu J, Wang Y S, Cao W Z, et al. The formation mechanism and process of Lantianwan landslide in Moxi Earthquake in 1786[J]. Journal of Mountain Research, 2016, 34(5): 520-529(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201605003.htm
    [24] 罗永红, 王运生. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报, 2013, 31(2): 200-210. doi: 10.3969/j.issn.1008-2786.2013.02.009

    Luo Y H, Wang Y S. The topographic amplification effect of the mountain slope shaking induced by the Wenchuan Earthquake[J]. Journal of Mountain Research, 2013, 31(2): 200-210(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2013.02.009
    [25] 刘铮, 李滨, 贺凯, 等. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 2020, 26(4): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004004.htm

    Liu Z, Li B, He K, et al. Analysis of dynamic response characteristics of the Yigong landslide in Tibet under earthquake[J]. Chinese Journal of Geomechanics, 2020, 26(4): 471-480(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004004.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  783
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31

目录

    /

    返回文章
    返回