Energy conversion of the high-speed landslide movement process based on a sliding surface partition mechanical model
-
摘要: 高速滑坡具有运动速度快、波及范围广的灾害特征, 因此对滑坡启动、加速和静止整个运动过程进行研究很有必要。基于滑面力学特性将滑面分为弹性介质区和应变弱化区, 构建了高速滑坡二维力学模型, 提出了滑坡启动动能计算公式和滑坡运动过程的能量计算公式; 以千将坪滑坡为例, 采用启动动能计算公式得出滑坡的启动速度为2.35 m/s; 依据滑面形态将其运动轨迹划分为快速加速、平稳加速、平稳减速、急剧减速4个阶段, 进行运动过程分析, 得出滑坡最大速度为16.8 m/s, 以滑坡前缘高程所在平面为势能基准面, 分析不同能量与总能量占比的变化情况, 在滑坡的4个运动阶段中, 动能占比分别为9.1%, 25.6%, 15.1%, 0%;摩擦损耗能量占比分别为: 5.5%, 58.8%, 81.7%, 95.5%;势能占比分别为: 85.2%, 14.2%, 0%, 0%;其他阻力能耗占比分别为: 0.2%, 1.4%, 3.2%, 4.5%。研究结论对高速滑坡致灾机制和风险分析具有重要意义。Abstract: High-speed landslides have the characteristics of fast movement speed and rapid spread. Therefore, it is necessary to study the whole movement process of landslides starting, accelerating and resting.Based on the mechanical properties of the sliding surface, the sliding surface is divided into an elastic medium region and a strain weakening region, and a two-dimensional mechanical model of a high-speed landslide is constructed. The energy calculation formulas of landslide initiation and landslide movement processes are proposed. Taking the Qianjiangping landslide as an example, the initiation speed of the landslide is 2.35 m/s by using the energy calculation formula of landslide initiation. According to the sliding surface morphology, the landslide movement trajectory can be divided into a fast acceleration stage, a steady acceleration stage, a steady deceleration stage, and a sharp deceleration stage. The maximum speed is 16.8 m/s during analysing the motion process. The elevation plane of the landslide front is taken as the potential energy datum plane to analyze the variation in different energy and total energy ratios. In the four movement stages of the landslide, the proportions of kinetic energy were 9.1%, 25.6%, 15.1%, and 0%; the proportions of friction loss energy were 5.5%, 58.8%, 81.7%, and 95.5%; the proportions of potential energy were 85.2%, 14.2%, 0%, and 0%;and the proportions of other resistance energy consumption were 0.2%, 1.4%, 3.2%, and 4.5%. The research conclusions are of great significance to the hazard mechanism and risk analysis of high-speed landslides.
-
Key words:
- mechanical model /
- landslide movement process /
- Qianjiangping landslide /
- energy loss /
- landslide speed
-
表 1 滑带土抗剪强度[29]
Table 1. Shear strength of sliding zone soil
位置 参数 直接剪切 反复剪 弹性介质区 c/kPa 28.3 13.8 φ/(°) 18.2 17.6 应变软化区 c/kPa 20.5 5.0 φ/(°) 19.0 18.4 表 2 滑坡启动速度参数表[27]
Table 2. Parameters of landslide′s starting speed
参数 量值 参数 量值 应力软化区段长度L1/m 750 应力软化区段面积S1/m2 27 500 弹性介质区段长度L2/m 450 弹性介质区段面积S2/m2 24 500 滑坡岩土体天然或饱和重度γ/(MN·m-3) 0.025,0.029 后缘拉裂槽宽度lf/m 1.4 后缘滑面倾角β/(°) 30 滑面平均倾角α0/(°) 12 表 3 千将坪滑坡运动各阶段计算结果
Table 3. Calculation results of Qianjiangping landslide′s different movement stages
滑坡运动阶段 水平位移/m 瞬时速度/ (m·s-1) 瞬时势能/ 总能量/% 瞬时动能/ 总能量/% 瞬时摩擦能耗/ 总能量/% 其他阻力能耗/ 总能量/% 阶段一 15.0 10.0 85.2 9.1 5.5 0.2 阶段二 127.5 16.8 14.2 25.6 58.8 1.4 阶段三 52.5 12.9 0 15.1 81.7 3.2 阶段四 30.0 0 0 0 95.5 4.5 表 4 不同分界点高程各阶段速度对比
Table 4. Velocity comparison in different stages of different boundary point elevations
分界点滑面高程/m 启动速度/ (m·s-1) 第一阶段速度/(m·s-1) 第二阶段速度/(m·s-1) 第三阶段速度/(m·s-1) 205 0.84 8.6 14.1 11.35 210 1.92 9.3 15.5 12.1 215 2.35 10.0 16.8 12.9 220 3.99 10.8 17.8 13.5 225 4.74 11.1 18.5 14.6 -
[1] 肖盛燮, 周小平, 杨海清, 等. 二维高速滑坡力学模型[J]. 岩石力学与工程学报, 2006, 25(3): 456-461. doi: 10.3321/j.issn:1000-6915.2006.03.003Xiao S X, Zhou X P, Yang H Q, et al. Two-dimensional high-speed landslide mechanics model[J]. Rock Mechanics and Engineering, 2006, 25(3): 456-461(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.03.003 [2] 肖诗荣, 刘德富, 胡志宇. 世界三大典型水库型顺层岩质滑坡工程地质比较研究[J]. 工程地质学报, 2010, 18(1): 52-59. doi: 10.3969/j.issn.1004-9665.2010.01.007Xiao S R, Liu D F, Hu Z Y. Comparative study on engineering geology of three typical reservoir-type bedding rock landslides in the world[J]. Journal of Engineering Geology, 2010, 18(1): 52-59(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.01.007 [3] Wang F, Zhang Y, Huo Z, et al. Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China[J]. Landslides, 2008, 5(4): 379-386. doi: 10.1007/s10346-008-0130-7 [4] 胡广韬, 毛延龙, 赵法锁. 论基岩滑坡的启程弹冲与行程高速[J]. 灾害学, 1992, 7(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199203000.htmHu G T, Mao Y L, Zhao F S. On the starting elastic impact and travel speed of bedrock landslide[J]. Disaster Science, 1992, 7(3): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199203000.htm [5] 邹宗兴, 唐辉明, 熊承仁, 等. 高速岩质滑坡启动弹冲加速机制及弹冲速度计算: 以武隆县鸡尾山滑坡为例[J]. 岩土力学, 2014, 35(7): 2004-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407033.htmZou Z X, Tang H M, Xiong C R, et al. The acceleration mechanism of high-speed rock landslide and the calculation of elastic impact velocity: A case study of Jiweishan landslide in Wulong County[J]. Geotechnical Mechanics, 2014, 35(7): 2004-2012(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407033.htm [6] 王兵, 李云, 柴波, 等. 三峡库区易滑地层硬质岩石破坏模式的能量学分析[J]. 安全与环境工程, 2020, 27(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202001005.htmWang B, Li Y, Chai B, et al. Energy analysis of failure mode of hard rock in slippery stratum in Three Gorges Reservoir area[J]. Safety and Environmental Engineering, 2020, 27(1): 26-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202001005.htm [7] Yang M, Fukawa T, Ohnishi Y, et al. The application of three-dimensional DDA with a spherical rigid block to rockfall simulation[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(3): 476-476. [8] Sassa K, He B, Dang K, et al. Plenary: Progress in landslide dynamics[M]. : Springer International Publishing, 2014. [9] Liu W, He S M, Ouyang C J. Dynamic process simulation with a Savage-Hutter type model for the intrusion of landslide into river[J]. Journal of Mountain Science, 2016, 13(7): 1265-1274. doi: 10.1007/s11629-015-3439-4 [10] Liu D, Chen X. Microscopic observation and analysis of ring shear surface of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1827-1834. [11] Lin H C, Kan, Y C, Sung W P, et al. A deep catastrophic failure model of hillslope for numerical manifold method and multiple physics computation[J]. Arabian Journal for Science & Engineering, 2015, 40(3), 735-746. [12] Kuo Y S, Tsai Y J, Chen Y S, et al. Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot[J]. Landslides, 2013, 10(2): 191-202. doi: 10.1007/s10346-012-0315-y [13] Crosta G B, Imposimato S, Roddeman D. Landslide spreading, impulse water waves and modelling of the vajont rockslide[J]. Rock Mechanics and Rock Engineering, 2015, 49(6): 1-24. [14] Feng C, Li S H, Liu X Y, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1): 26-35. doi: 10.1016/j.jrmge.2013.12.001 [15] Tommasi P, Campedel P, Consorti C, et al. A Discontinuous approach to the numerical modelling of rock avalanches[J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 37-58. doi: 10.1007/s00603-007-0133-z [16] Lo C M, Lin M L, Tang C L, et al. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology, 2011, 123(1/2): 22-39. [17] 朱冬雪, 许强, 李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(2): 158-167. doi: 10.19509/j.cnki.dzkq.2020.0217Zhu D X, Xu Q, Li S L. Genetic model and geological characteristics analysis of large-to-large layered rock landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 158-167(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0217 [18] 曹颖, 殷坤龙, 徐丽萍. 孔隙水压力的变化与滑坡速度的关系[J]. 地质科技情报, 2014, 33(4): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404031.htmCao Y, Yin K L, Xu L P. Relationship between variation of pore water pressure and landslide velocity[J]. Geological Science and Technology Information, 2014, 33(4): 202-206(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404031.htm [19] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108Li C D, Long J J, Jiang X H, et al. Research progress and prospect of reservoir landslide mechanism[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108 [20] 秦四清. 斜坡失稳的突变模型与混沌机制[J]. 岩石力学与工程学报, 2000, 19(4): 486-492. doi: 10.3321/j.issn:1000-6915.2000.04.020Qin S Q. Catastrophe model and chaos mechanism of slope instability[J]. Journal of Rock Mechanics and Engineering, 2000, 19(4): 486-492(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.020 [21] 岳建伟, 杨光辉, 王思远, 等. 基于弹性滑体的边坡失稳尖点突变模型研究[J]. 河南大学学报: 自然科学版, 2019, 49(3): 354-361. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201903013.htmYue J W, Yang G H, Wang S Y, et al. Research on the cusp catastrophe model of slope instability based on elastic sliding body[J]. Journal of Henan University: Natural Science Edition, 2019, 49(3): 354-361(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201903013.htm [22] 李帅, 苏永华, 杜俊旺. 基于突变特征的边坡工程失稳判据研究[J]. 防灾减灾工程学报, 2020, 40(6): 852-859. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202006002.htmLi S, Su Y H, Du J W. Research on instability criterion of slope engineering based on mutation characteristics[J]. Engineering Journal of Disaster Prevention and Reduction, 2020, 40(6): 852-859(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202006002.htm [23] 张浩, 崔永杰, 赵亚强. 尖点突变理论模型在岩质边坡的应用研究[J]. 宁夏大学学报: 自然科学版, 2018, 39(3): 223-226, 233. doi: 10.3969/j.issn.0253-2328.2018.03.007Zhang H, Cui Y J, Zhao Y Q. Application of cusp catastrophe theory model in rock slope[J]. Journal of Ningxia University: Natural Science Edition, 2018, 39(3): 223-226, 233(in Chinese with English abstract). doi: 10.3969/j.issn.0253-2328.2018.03.007 [24] 夏开宗, 刘秀敏, 陈从新, 等. 考虑突变理论的顺层岩质边坡失稳研究[J]. 岩土力学, 2015, 36(2): 477-486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502028.htmXia K Z, Liu X M, Chen C X, et al. Study on instability of bedding rock slope considering catastrophe theory[J]. Geotechnical Mechanics, 2015, 36(2): 477-486(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502028.htm [25] 黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. doi: 10.19509/j.cnki.dzkq.2021.0111Huang S P, Yan E C, Yin X M, et al. Influence of geometric characteristics of slope inversion deformation of layered reverse rocks under different conditions[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 159-165(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0111 [26] 廖秋林, 李晓, 李守定, 等. 三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究[J]. 岩石力学与工程学报, 2005, 24(17): 3146-3153. doi: 10.3321/j.issn:1000-6915.2005.17.023Liao Q L, Li X, Li S D, et al. Study on the occurrence, geological features, genesis and landslide criterion of Qianjiangping landslide in Three Gorges Reservoir area[J]. Rock Mechanics and Engineering, 2005, 24(17): 3146-3153(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.023 [27] 汪发武, 彭轩明, 霍志涛, 等. 三峡库区千将坪滑坡的高速远程滑动机理与库水位变动条件下树坪滑坡的变形模式[C]//第八届全国工程地质大会论文集. 2008.Wang F W, Peng X M, Huo Z T, et al. The mechanism of high-speed and long-distance sliding of Qianjiangping landslide in the Three Gorges Reservoir area and the deformation mode of Shuping landslide under the condition of reservoir water level change[C]//The papers of the Eighth National Engineering Geological Congress. 2008(in Chinese). [28] 肖诗荣, 刘德富, 姜福兴, 等. 三峡库区千将坪滑坡地质力学模型试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005023.htmXiao S R, Liu D F, Jiang F X, et al. Geomechanical model test of Qianjiangping landslide in Three Gorges Reservoir area[J]. Rock Mechanics and Engineering Journal, 2010, 29(5): 1023-1030(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005023.htm [29] 肖诗荣, 刘德富, 胡志宇. 三峡库区千将坪滑坡高速滑动机制研究[J]. 岩土力学, 2010, 31(11): 3531-3536. doi: 10.3969/j.issn.1000-7598.2010.11.029Xiao S R, Liu D F, Hu Z Y. Study on high-speed sliding mechanism of Qianjiangping landslide in Three Gorges Reservoir area[J]. Geotechnical Mechanics, 2010, 31(11): 3531-3536(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.11.029 [30] 肖莉丽, 殷坤龙, 刘艺梁, 等. 高速库岸岩质滑坡运动过程及速度分析[J]. 地质科技情报, 2012, 31(4): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204021.htmXiao L L, Yin K L, Liu Y L, et al. High-speed reservoir rock landslide movement process and speed analysis[J]. Geological Science and Technology Information, 2012, 31(4): 117-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204021.htm