留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晚始新世-渐新世东南印度洋沉积物源-汇过程及其古气候指示意义

范庆超 徐兆凯 孙天琪 李铁刚 常凤鸣

范庆超, 徐兆凯, 孙天琪, 李铁刚, 常凤鸣. 晚始新世-渐新世东南印度洋沉积物源-汇过程及其古气候指示意义[J]. 地质科技通报, 2022, 41(3): 9-19. doi: 10.19509/j.cnki.dzkq.2022.0066
引用本文: 范庆超, 徐兆凯, 孙天琪, 李铁刚, 常凤鸣. 晚始新世-渐新世东南印度洋沉积物源-汇过程及其古气候指示意义[J]. 地质科技通报, 2022, 41(3): 9-19. doi: 10.19509/j.cnki.dzkq.2022.0066
Fan Qingchao, Xu Zhaokai, Sun Tianqi, Li Tiegang, Chang Fengming. Sediment source-to-sink processes of the southeastern Indian Ocean during the Late Eocene-Oligocene and their potential significance for paleoclimate[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 9-19. doi: 10.19509/j.cnki.dzkq.2022.0066
Citation: Fan Qingchao, Xu Zhaokai, Sun Tianqi, Li Tiegang, Chang Fengming. Sediment source-to-sink processes of the southeastern Indian Ocean during the Late Eocene-Oligocene and their potential significance for paleoclimate[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 9-19. doi: 10.19509/j.cnki.dzkq.2022.0066

晚始新世-渐新世东南印度洋沉积物源-汇过程及其古气候指示意义

doi: 10.19509/j.cnki.dzkq.2022.0066
基金项目: 

国家自然科学基金项目 41876034

国家自然科学基金项目 41676038

中国科学院战略性先导科技专项 XDB42000000

详细信息
    作者简介:

    范庆超(1995—),男,现正攻读海洋地质专业硕士学位,主要从事海洋沉积地球化学研究。E-mail: fanqingchao@qdio.ac.cn

    通讯作者:

    徐兆凯(1978—),男,研究员,主要从事海洋地质学研究与教学工作。E-mail: zhaokaixu@qdio.ac.cn

  • 中图分类号: P512.2

Sediment source-to-sink processes of the southeastern Indian Ocean during the Late Eocene-Oligocene and their potential significance for paleoclimate

  • 摘要:

    晚始新世-渐新世期间南大洋及其周边地区的古气候响应研究有助于我们更好地认识地质历史上的重大气候转型机制和预测未来地球系统对于气候突变的响应, 然而迄今为止, 仍缺乏对该区域周边陆地的古气候响应研究。基于国际大洋发现计划(IODP)369航次U1516站位深海沉积物的年龄框架以及常量、微量和稀土元素组成, 确定了该沉积物主要来源于澳大利亚西南部大陆, 进而重建了构造时间尺度上物源区的化学风化历史。在此基础上, 探讨了晚始新世-渐新世气候转折期南大洋周边大陆的古气候演化过程及其对于全球气候变化和区域古地理改变的响应。在始新世-渐新世转折期[34.1, 33.6) Ma和[31.3, 29.8) Ma期间, 物源区的古气候主要受控于邻近区域古地理格局重大变化的影响, 具体表现为气候条件趋于干冷和陆表化学风化强度降低的特征。在[33.6, 31.3) Ma和[29.8, 25.2] Ma期间, 物源区的古气候则主要响应全球气候的变化, 在前一阶段由干冷向湿热转变, 而陆表化学风化强度相应增高;在后一阶段,气候保持在相对稳定的干冷状态,陆表化学风化强度也较弱。

     

  • 图 1  曼达岬盆地国际大洋发现计划369航次U1516站位位置、周边潜在物源区和洋流示意图(a)和早渐新世(约30 Ma)U1516站位及相关典型站位古地理位置示意图(b)[22]

    Figure 1.  Bathymetric map showing the location of International Ocean Discovery Program Site U1516, the nearby geologic structures and ocean currents (a), and paleogeographic map of the Early Oligocene (30 Ma) showing the locations of Site U1516 andsome typical sites (b)

    图 2  U1516站位C孔典型常量、微量和稀土元素质量分数垂向变化

    Figure 2.  Vertical changes of major, trace and rare earth element contents in Hole C, Site U1516

    图 3  U1516站位C孔典型元素比值(K/Al、Rb/Sr、Th/K)、K质量分数、化学蚀变指数(CIA)和稀土元素比值(La/Yb)UCC剖面变化

    绿线代表西南澳大利亚陆源碎屑源区平均(La/Yb)UCC[29-32];紫线代表博物学家海底高原火山碎屑源区平均(La/Yb)UCC[33]

    Figure 3.  Downcore variations in typical element ratios (K/Al, Rb/Sr, Th/K), K content, and chemical index of alteration(CIA) and (La/Yb)UCC in Hole C, Site U1516

    图 4  U1516站位沉积物碎屑态及周边潜在物源区Al-Zr-Ti三角图解(a)和(Gd/Yb)UCC-(La/Sm)UCC图解(b)

    Figure 4.  Al-Zr-Ti ternary diagram (a), and (Gd/Yb)UCC vs.(La/Sm)UCC plot (b) of siliciclastic sediments from Site U1516 and surrounding potential source areas

    图 5  U1516站位沉积物碎屑态Al2O3-(CaO*+Na2O)-K2O(A-CN-K)图解

    Figure 5.  Al2O3-(CaO*+Na2O)-K2O(A-CN-K) plot of siliciclastic sediments from Site U1516

    图 6  U1516站位沉积物碎屑态化学风化强度指标(K/Al(c)、Rb/Sr(e)、CIA(d))和气候干旱湿润性替代指标(Th/K(h)、w(K)(i))与全球深海氧同位素[10](a)、大洋钻探计划738和744站位浮游有孔虫(Subbotina.angiporoides)Mg/Ca比值[64](b)、大气CO2浓度[9](f)、全球平均海平面[65](g)、大洋钻探计划1168站位鱼牙化石εNd[14](j)、北大西洋ASP-5站位底栖有孔虫(Cibicidoides spp.) δ13C[2](k)对比

    Figure 6.  Comparison among chemical weathering intensity proxies(K/Al(c), Rb/Sr(e), CIA(d)) and paleoclimate change proxies(Th/K(h), K content(i)) of siliciclastic sediments at Site U1516, global deep sea δ18O[10](a), Ocean Drilling Program 738 and 744 planktonic foraminifera(Subbotina.angiporoides)Mg/Ca[63](b), atmospheric CO2 concentration[9](f), global mean sea level[65](g), Ocean Drilling Program 1168 fish tooth εNd[13](j), North Atlantic ASP-5 benthic foraminifera(Cibicidoides spp.) δ13C[2](k)

    表  1  U1516站位C孔的年龄模式[4]

    Table  1.   Chronological pattern of Hole C, Site U1516

    类型 古生物事件 年龄/Ma 深度/m
    浮游有孔虫 Globoquadrina dehiscens底界 22.44 262.37
    浮游有孔虫 Paragloborotalia opima顶界 26.93 272.70
    浮游有孔虫 Tuborotalia ampliapertura顶界 30.28 280.70
    浮游有孔虫 Paragloborotalia opima底界 30.72 290.19
    钙质超微化石 Reticulofenestra umbilica顶界 33.43 320.20
    钙质超微化石 Discoaster saipanensis顶界 34.44 341.29
    下载: 导出CSV
  • [1] 王尹, 李祥辉, 刘玲. 古大气CO2浓度重建方法技术研究现状[J]. 地质科技情报, 2012, 31(2): 90-98. doi: 10.3969/j.issn.1000-7849.2012.02.015

    Wang Y, Li X H, Liu L. On methods and technologies for reconstruction of paleoatmospheric CO2 concentration[J]. Geological Science and Technology Information, 2012, 31(2): 90-98(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2012.02.015
    [2] Katz M E, Cramer B S, Toggweiler J R, et al. Impact of antarctic circumpolar current development on Late Paleogene ocean structure[J]. Science, 2011, 332(6033): 1076-1079. doi: 10.1126/science.1202122
    [3] Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle[J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211
    [4] Huber B T, Hobbs R W, Bogus K A, et al. Expedition 369 preliminary report: Australia Cretaceous climate and tectonics[R]. [S. l. ]: International Ocean Discovery Program, 2018.
    [5] Exon N F, Kennett J P, Malone M J. Leg 189 synthesis: Cretaceous-Holocene history of the Tasmanian Gateway[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2004, 189: 1-37.
    [6] Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the Eocene-Oligocene climate transition[J]. Science, 2009, 323: 1187-1190. doi: 10.1126/science.1166368
    [7] Gallagher S J, Wade B, Qianyu L, et al. Eocene to Oligocene high paleolatitude neritic record of Oi-1 glaciation in the Otway Basin, southeast Australia[J]. Global and Planetary Change, 2020, 191: 103218. doi: 10.1016/j.gloplacha.2020.103218
    [8] Galeotti S, Deconto R, Naish T, et al. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition[J]. Science, 2016, 352(6281): 76-80. doi: 10.1126/science.aab0669
    [9] Zhang Y G, Pagani M, Liu Z, et al. A 40-million-year history of atmospheric CO2[J]. Philosophical Transactions of the Royal Society A, 2013, 371: 20130096. doi: 10.1098/rsta.2013.0096
    [10] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387. doi: 10.1126/science.aba6853
    [11] 拓守廷, 刘志飞. 始新世-渐新世界线的全球气候事件: 从"温室"到"冰室"[J]. 地球科学进展, 2003, 18(5): 691-696. doi: 10.3321/j.issn:1001-8166.2003.05.008

    Tuo S T, Liu Z F. Global climate event at the Eocene-Oligocene transition: From greenhouse to icehouse[J]. Advance in Earth Sciences, 2003, 18(5): 691-696(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2003.05.008
    [12] 江湉, 贾建忠, 邓丽君, 等. 古近纪重大气候事件及其生物响应[J]. 地质科技情报, 2012, 31(3): 31-38. doi: 10.3969/j.issn.1000-7849.2012.03.005

    Jiang T, Jia J Z, Deng L J, et al. Significant climate events in Paleogene and their biotic response[J]. Geological Science and Technology Information, 2012, 31(3): 31-38(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2012.03.005
    [13] Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago[J]. Nature, 1976, 260(5551): 513-515. doi: 10.1038/260513a0
    [14] Scher H D, Whittaker J M, Williams S E, et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies[J]. Nature, 2015, 523(7562): 580-583. doi: 10.1038/nature14598
    [15] Pearson P N, Foster G L, Wade B S. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition[J]. Nature, 2009, 461(7267): 1110-1113. doi: 10.1038/nature08447
    [16] Deconto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2[J]. Nature, 2003, 421(6920): 245-249. doi: 10.1038/nature01290
    [17] Sijp W P, England M H, Toggweiler J R. Effect of ocean gateway changes under greenhouse warmth[J]. Journal of Climate, 2009, 22(24): 6639-6652. doi: 10.1175/2009JCLI3003.1
    [18] Scher H D, Bohaty S M, Zachos J C, et al. Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene-Oligocene transition[J]. Geology, 2011, 39(4): 383-386. doi: 10.1130/G31726.1
    [19] Zachos J C, Quinn T M, Salamy K A. High-resolution(104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition[J]. Paleoceanography, 1996, 11(3): 353-387.
    [20] 肖国桥, 张仲石, 姚政权. 始新世-渐新世气候转变研究进展[J]. 地质论评, 2012, 58(1): 91-105. doi: 10.3969/j.issn.0371-5736.2012.01.009

    Xiao G Q, Zhang Z S, Yao Z Q. The Eocene-Oligocene climate transition: Review of recent progress[J]. Geological Review, 2012, 58(1): 91-105(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.01.009
    [21] Houben A J P, Bijl P K, Pross J, et al. Reorganization of southern ocean plankton ecosystem at the onset of Antarctic Glaciation[J]. Science, 2013, 340(6310): 341-344.
    [22] Scotese C. Palaomap paleoatlas for gplates and the paleodataplotter program[C]//Anon. 50th Annual GSA North-Central Section Meeting. [S. l. ]: [s. n. ], 2016.
    [23] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
    [24] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717. doi: 10.1038/299715a0
    [25] Wan S M, Clift P D, Li A C, et al. Geochemical records in the South China Sea: Implications for East Asian summer monsoon evolution over the last 20 Ma[J]. Geological Society London Special Publications, 2010, 342(1): 245-263. doi: 10.1144/SP342.14
    [26] Chen H J, Xu Z K, Lim D, et al. Geochemical records of the provenance, silicate weathering/erosion from the eastern Arabian Sea and their responses to the Indian summer monsoon since the Mid-Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(4): e2019PA003732.
    [27] Jin Z D, Wang S M, Shen J, et al. Chemical weathering since the little ice age recorded in lake sediments: A high-resolution proxy of past climate[J]. Earth Surface Processes and Landforms, 2001, 26(7): 775-782. doi: 10.1002/esp.224
    [28] Wei G J, Li X H, Liu Y, et al. Geochemical record of chemical weathering and monsoon climate change since the Early Miocene in the South China Sea[J]. Paleoceanography, 2006, 21: PA4214.
    [29] Smithies R, Spaggiari C, Kirkland C. Building the crust of the Albany-Fraser Orogen: Constraints from granite geochemistry[R]. [S. l. ]: Geological Survey of Western Australia, Report 15, 2015.
    [30] Wilde S, Nelson D. Geology of the western Yilgarn Craton and Leeuwin Complex[R]. [S. l. ]: Geological Survey of Western Australia 15, 2001: 41.
    [31] Chen S F, Riganti A, Wyche S, et al. Lithostratigraphy and tectonic evolution of contrasting greenstone successions in the central Yilgarn Craton, Western Australia[J]. Precambrian Research, 2003, 127: 249-266. doi: 10.1016/S0301-9268(03)00190-6
    [32] Qiu Y, Mcnaughton N, Groves D, et al. First record of 1.2 Ga quartz dioritic magmatism in the Archaean Yilgarn Craton, Western Australia, and its significance[J]. Australian Journal of Earth Sciences, 1999, 46: 421-428. doi: 10.1046/j.1440-0952.1999.00715.x
    [33] Pyle D G, Christie D M, Mahoney J J, et al. Geochemistry and geochronology of ancient southeast Indian and southwest Pacific seafloor[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B11): 22261-22282. doi: 10.1029/95JB01424
    [34] Zhao D B, Wan S M, Clift P D, et al. Provenance, sea-level and monsoon climate controls on silicate weathering of Yellow River sediment in the northern Okinawa Trough during late last glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 227-239. doi: 10.1016/j.palaeo.2017.11.002
    [35] 林旭, 赵希涛, 吴中海, 等. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 2020, 39(6): 10-18. doi: 10.19509/j.cnki.dzkq.2020.0602

    Lin X, Zhao X T, Wu Z H, et al. Source tracing elements of K-feldspars of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0602
    [36] Exon N F, Kennett J P, Malone M J. The Cenozoic southern ocean: Tectonics, sedimentation, and climate change between Australia and Antarctica[M]. Washington D C: American Geophysical Union Geophysical Monograph Series, 2004: 151.
    [37] Williams S E, Whittaker J M, Miiller R D. Full-fit, palinspastic reconstruction of the conjugate Australian-Antarctic margins[J]. Tectonics, 2011, 30(6): 1-21.
    [38] Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 107-138. doi: 10.1146/annurev-earth-060115-012211
    [39] Gallagher S, Fulthorpe C, Bogus K, et al. Expedition 356 summary[R]. [S. l. ]: International Ocean Discovery Program, 2017.
    [40] Hill R S. History of the Australian vegetation: Cretaceous to recent[M]. Cambridge: Cambridge University Press, 1994.
    [41] Direen N G, Cohen B, Maas R, et al. Naturaliste Plateau: Constraints on the timing and evolution of the Kerguelen large igneous province and its role in Gondwana breakup[J]. Australian Journal of Earth Sciences, 2017, 64(1): 851-869.
    [42] Cawood P, Nemchin A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia[J]. Sedimentary Geology, 2000, 134: 209-234. doi: 10.1016/S0037-0738(00)00044-0
    [43] Descourvieres C, Douglas G, Leyland L, et al. Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: The Cretaceous Leederville Formation, southwest Australia[J]. Sedimentary Geology, 2011, 236(1/2): 62-76.
    [44] Dillinger A, George A D, Parra-Avila L A. Early Permian sediment provenance and paleogeographic reconstructions in southeastern Gondwana using detrital zircon geochronology(Northern Perth Basin, Western Australia)[J]. Gondwana Research: International Geoscience Journal, 2018, 59: 57-75.
    [45] Olierook H K, Barham M, Fitzsimons I C, et al. Tectonic controls on sediment provenance evolution in rift basins: Detrital zircon U-Pb and Hf isotope analysis from the Perth Basin, Western Australia[J]. Gondwana Research, 2019, 66: 126-142. doi: 10.1016/j.gr.2018.11.002
    [46] Lee E Y, Wolfgring E, Tejada M L, et al. Early Cretaceous subsidence of the Naturaliste Plateau defined by a new record of volcaniclastic-rich sequence at IODP Site U1513[J]. Gondwana Research, 2020, 82: 1-11. doi: 10.1016/j.gr.2019.12.007
    [47] Cassidy K, Champion D, Krapez B, et al. A revised geological framework for the Yilgarn Craton, Western Australia[R]. [S. l. ]: Geological Survey of Western Australia: Record 8, 2006.
    [48] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508
    [49] Xu Z K, Lim D, Li T G, et al. REEs and Sr-Nd isotope variations in a 20 ky-sediment core from the middle Okinawa Trough, East China Sea: An in-depth provenance analysis of siliciclastic components[J]. Marine Geology, 2019, 415: 105970. doi: 10.1016/j.margeo.2019.105970
    [50] 柏道远, 蒋启生, 李彬, 等. 湘东北冷家溪群沉积岩地球化学特征及其构造意义[J]. 地质科技通报, 2021, 40(1): 1-13. doi: 10.19509/j.cnki.dzkq.2021.0017

    Bo D Y, Jiang Q S, Li B, et al. Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 1-13(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0017
    [51] Storey M. Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1992, 120: 33-53.
    [52] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
    [53] 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019

    Feng L J, Chu X L, Zhang Q R, et al. CIA(chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.04.019
    [54] Young G M, Nesbitt H W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation(Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. Geological Society of America Bulletin, 1999, 111(2): 264-274. doi: 10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2
    [55] Cai M J, Xu Z K, Clift P D, et al. Depositional history and indian summer monsoon controls on the silicate weathering of sediment transported to the eastern Arabian Sea: Geochemical records from IODP site U1456 since 3.8 Ma[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(9): 4336-4353. doi: 10.1029/2018GC008157
    [56] Xu Z K, Li T G, Clift P D, et al. Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO2 sink[J]. Chemical Geology, 2017, 476: 302-315.
    [57] 徐兆凯, 常凤鸣, 李铁刚, 等. 24 ka来冲绳海槽北部沉积物来源的高分辨率常量元素记录[J]. 海洋地质与第四纪地质, 2012, 32(4): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201204013.htm

    Xu Z K, Chang F M, Li T G, et al. Provenance of sediments in the northern Okinawa trough over the last 24 ka: High resolution record from major elements[J]. Marine Geology and Quaternary Geology, 2012, 32(4): 73-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201204013.htm
    [58] Groeneveld J, Henderiks J, Renema W, et al. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies[J]. Science Advances, 2017, 3: e1602567. doi: 10.1126/sciadv.1602567
    [59] Kuhnt W, Holbourn A, Xu J, et al. Southern Hemisphere control on Australian monsoon variability during the Late Deglaciation and Holocene[J]. Nature Communication, 2015, 6: 5916. doi: 10.1038/ncomms6916
    [60] Wan S M, Clift P D, Li A C, et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma[J]. Geophysical Research Letters, 2012, 39(15): L15611.
    [61] Li J W, Vasconcelos P. Cenozoic continental weathering and its implications for the palaeoclimate: Evidence from 40Ar/39Ar geochronology of supergene K-Mn oxides in Mt Tabor, central Queensland, Australia[J]. Earth and Planetary Science Letters, 2002, 200: 223-239. doi: 10.1016/S0012-821X(02)00594-0
    [62] Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies[J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002
    [63] Stein R, Robert C. Siliciclastic sediments at sites 588, 590, and 591: Neogene and Paleogene evolution in the southwest Pacific and Australian climate[J]. Initial Reports Deep Sea Drilling Project, 1985, 90(16): 1437-1455.
    [64] Bohaty S M, Zachos J C, Delaney M L. Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene-Oligocene transition[J]. Earth and Planetary Science Letters, 2012, 317/318: 251-261. doi: 10.1016/j.epsl.2011.11.037
    [65] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6: eaaz1346.
    [66] Martin H A. Cenozoic climatic change and the development of the arid vegetation in Australia[J]. Journal of Arid Environments, 2006, 66(3): 533-563.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  134
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-12

目录

    /

    返回文章
    返回