留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下侏罗统辛涅缪尔阶—普林斯巴阶界线地质事件研究进展

葛禹 时志强

葛禹, 时志强. 下侏罗统辛涅缪尔阶—普林斯巴阶界线地质事件研究进展[J]. 地质科技通报, 2023, 42(1): 218-225. doi: 10.19509/j.cnki.dzkq.2022.0071
引用本文: 葛禹, 时志强. 下侏罗统辛涅缪尔阶—普林斯巴阶界线地质事件研究进展[J]. 地质科技通报, 2023, 42(1): 218-225. doi: 10.19509/j.cnki.dzkq.2022.0071
Ge Yu, Shi Zhiqiang. Sinemurian-Pliensbachian boundary event (Early Jurassic): Current status and future challenges[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 218-225. doi: 10.19509/j.cnki.dzkq.2022.0071
Citation: Ge Yu, Shi Zhiqiang. Sinemurian-Pliensbachian boundary event (Early Jurassic): Current status and future challenges[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 218-225. doi: 10.19509/j.cnki.dzkq.2022.0071

下侏罗统辛涅缪尔阶—普林斯巴阶界线地质事件研究进展

doi: 10.19509/j.cnki.dzkq.2022.0071
基金项目: 

国家自然科学基金面上项目 41572085

详细信息
    作者简介:

    葛禹(1995—), 男, 现正攻读沉积学专业硕士学位, 主要从事沉积地质研究工作。E-mail: geyuy@qq.com

    通讯作者:

    时志强(1972—), 男, 教授, 主要从事沉积地质研究工作。E-mail: szqcdut@163.com

  • 中图分类号: P534.52

Sinemurian-Pliensbachian boundary event (Early Jurassic): Current status and future challenges

  • 摘要:

    早侏罗世经历了赫塘期、辛涅缪尔期、普林斯巴期和土阿辛期, 其中土阿辛期大洋缺氧事件(T-OAE)被广泛研究。但在辛涅缪尔阶-普林斯巴阶界线处, δ13Corgδ13Ccarb曲线均发生负偏, 局部伴随黑色页岩沉积。其在英国、法国、意大利、葡萄牙以及中国等地区都有记录, 碳同位素的变化伴随着环境、气候的变化, 研究显示该事件可能是全球性的, 被称为“S-P界线事件”(SPBE)。此次地质事件与T-OAE事件类似, 也显示了一次大洋缺氧事件, 其发生时有轻碳同位素被排入了大气系统中, 但是轻碳同位素的来源尚不明确, 部分学者认为是大火成岩省喷发时排放的轻碳物质注入了海洋-大气系统所致。目前对该事件的研究主要集中于欧洲海相地层, 其对陆地生态系统的影响还知之甚少。我国四川盆地下侏罗统湖相沉积发育良好, 下侏罗统自流井组东岳庙段沉积有与大安寨段(T-OAE发生层段)类似的黑色页岩及介壳灰岩, 其有机碳同位素负偏, 显示了S-P界线事件的影响, 其与T-OAE类似也对四川盆地早侏罗世古湖泊产生了影响。

     

  • 图 1  S-P界线事件主要研究区域古地理分布图(底图改自文献[11])

    1.英国,Cardigan Bay盆地Mochras剖面、Cleveland盆地Robin Hood海湾剖面; 2.法国, 巴黎盆地Sancerre-Couy岩心; 3.葡萄牙, Lusitanian盆地S. Pedro de Moel剖面;4.意大利, Trento台地Viote剖面、Lormbardian盆地Tofino剖面;5.中国,四川盆地大槽剖面

    Figure 1.  Palaeogeographical distribution of the studied regions of S-P boundary event

    图 2  英国Cardigan Bay盆地Mochras农场HI值和有机碳同位素曲线图(据文献[22]修改)

    Figure 2.  HI, TOC and δ13CTOC curves at Mochras, Cardigan Bay Basin, United Kingdom

    图 3  欧洲早侏罗世海相地层对比图

    Figure 3.  Stratigraphic correlation of Early Jurassic marine sequences in the Europe

    图 4  早侏罗世的碳同位素地层划分与对比

    Figure 4.  Division and correlation of carbon isotopic strata in the Early Jurassic

  • [1] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Causes and consequences[J]. Geologie En Mijnbouw, 1976, 55(3): 179-184.
    [2] Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochem. Geophys. Geosyst., 2010, 11(3): 1-30.
    [3] Mchone G J. Broad-terrane Jurassic flood basalts across northeastern North America[J]. Geology, 1996, 24(4): 319-322. doi: 10.1130/0091-7613(1996)024<0319:BTJFBA>2.3.CO;2
    [4] Marzoli A, Renne P, Piccirllo E M, et al. Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province[J]. Science, 1999, 284: 616-618. doi: 10.1126/science.284.5414.616
    [5] Schöllhorn I, Adatte T, van de Schootbrugge B, et al. Climate and environmental response to the break-up of Pangea during the Early Jurassic (Hettangian-Pliensbachian): The Dorset coast (UK) revisited[J]. Global and Planetary Change, 2020, 185: 1-22.
    [6] 谭丽娟, 师萌, 葛毓柱, 等. 三叠系-侏罗系环境变化及界线研究方法综述[J]. 地球科学与环境学报, 2018, 40(3): 285-300. doi: 10.3969/j.issn.1672-6561.2018.03.006

    Tan L J, Shi M, Ge Y Z, et al. Revive on Triassic-Jurassic environment changes and boundary research methods[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 285-300(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2018.03.006
    [7] Jenkyns H C. The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: Comparisons and contrasts[J]. Geologische Rundschau, 1985, 74(3): 505-518. doi: 10.1007/BF01821208
    [8] Jenkyns H C. The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence[J]. American Journal of Science, 1988, 288(2): 101-151. doi: 10.2475/ajs.288.2.101
    [9] Jourdan F, Féraud G, Bertrand H, et al. The 40Ar/39Ar ages of the sill complex of the Karoo large igneous province: Implications for the Pliensbachian-Toarcian climate change[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(6): 1-20.
    [10] Korte C, Hesselbo S P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic[J]. Paleoceanography, 2011, 26(4): 1-18.
    [11] Lu J, Zhou K, Yang M, et al. Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China[J]. Global and Planetary Change, 2020, 195: 103331. doi: 10.1016/j.gloplacha.2020.103331
    [12] 杨競红, 蒋少涌, 凌洪飞, 等. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 2005, 12(2): 143-150. doi: 10.3321/j.issn:1005-2321.2005.02.016

    Yang J H, Jiang S Y, Ling H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2): 143-150(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.02.016
    [13] 于宁, 彭伟, 陈友智, 等. 黔东北梵净山地区沥青Re-Os同位素年龄对油气成藏年代的约束[J]. 地质科技通报, 2021, 40(5): 64-70. doi: 10.19509/j.cnki.dzkq.2021.0505

    Yu N, Peng W, Chen Y Z, et al. Constraint of the isotopic age of asphalt Re-Os on the age of hydrocarbon accumulation in Fanjingshan area in Northeast Guizhou[J]. Bulletion of Geological and Technology, 2021, 40(5): 64-70(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0505
    [14] Xu W, Ruhl M, Jenkyns H C, et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event[J]. Nature Geoscience, 2017, 10(2): 129. doi: 10.1038/ngeo2871
    [15] Price G D, Baker S J, Van DeVelde J H, et al. High-resolution carbon cycle and seawater temperature evolution during the Early Jurassic (Sinemurian-Early Pliensbachian)[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(10): 3917-3928. doi: 10.1002/2016GC006541
    [16] Peti L, Thibault N, Clémence M E, et al. Sinemurian-Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: Calibration to the ammonite biozonation of NW Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 142-161. doi: 10.1016/j.palaeo.2016.12.004
    [17] Ruhl M, Hesselbo S P, Hinnov L, et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations[J]. Earth & Planetary Science Letters, 2016, 455: 149-165. doi: 10.3969/j.issn.1000-3274.2016.02.015
    [18] Jenkyns H C, Jones C E, Grcke D R, et al. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography[J]. Journal of the Geological Society, 2002, 159(4): 351-378. doi: 10.1144/0016-764901-130
    [19] Masetti D, Claps M, Giacometti A, et al. The Calcari Frigi Formation of the Trento Platform (Early and Middle Lias, Venetian Prealps)[J]. AttiTicinensi di Scienzedella Terra, 1998, 40(1): 139-183.
    [20] Picotti V, Cobianchi M. Jurassic periplatform sequences of the eastern Lombardian Basin (Southern Alps): The deep-sea record of the tectonic evolution, growth and demise history of a carbonate platform[J]. Earth Planets & Space, 1996, 48(1): 171-219.
    [21] Franceschi M, Dal Corso J, Posenato R, et al. Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410(1): 255-263.
    [22] Storm M S, Hesselbo S P, Jenkyns H C, et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle[J]. Proceedings of the National Academy of Sciences, 2020, 117(8): 1-9.
    [23] Franceschi M, Jing X, Shi Z Q, et al. High-resolution record of multiple organic-carbon-isotope excursions in lacustrine deposits of Upper Sinemurian through Pliensbachian (Early Jurassic) from the Sichuan Basin, China[J/OL]. Geological Society of America Bulletin, 2022: 1-15.
    [24] Ziegler P A. Geological atlas of western and central Europe[M]. London: Shell Internationale Petroleum Maatschappij, 1990.
    [25] Bjerrum C J, Surlyk F, Callomon J H, et al. Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian Seaway[J]. Paleoceanography, 2001, 16(4): 390-404. doi: 10.1029/2000PA000512
    [26] Percival L, Cohen A S, Davies M K, et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change[J]. Geology, 2016, 44(9): 759-762. doi: 10.1130/G37997.1
    [27] Copestake P, Johnson B. Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole[J]. North Wales, UK. Monogr. Palaeontogr., 2014, 167(1): 1-403.
    [28] Woodland A W. The Llanbedr (Mochras Farm) Borehole[M]. [S. l. ]: Institute of Geological Sciences, 1971.
    [29] Franceschi M, Dal Corso J, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian-Pliensbachian, Southern Alps): Comparison with the Late Triassic Carnian Pluvial Episode[J]. Geological Society of America Bulletin, 2019, 131(7/8): 1255-1275.
    [30] Gomez J J, Comas-Rengifo M J, Goy A. Palaeoclimatic oscillations in the Pliensbachian (Lower Jurassic) of the Asturian Basin (Northern Spain)[J]. Climate of the Past, 2016;12(5): 1199-1214. doi: 10.5194/cp-12-1199-2016
    [31] Duarte L V, Comas-Rengifo M J, Silva R L, et al. Carbon isotope stratigraphy and ammonite biochronostratigraphy across the Sinemurian-Pliensbachian boundary in the western Iberian margin[J]. Bulletin of Geosciences, 2014, 89(4): 719-736.
    [32] Lu Y Z, Deng S H. Palaeoclimate around the Triassic-Jurassic boundary in southern margin of Junggar Basin[J]. Journal of Palaeogeography, 2009, 11(6): 652-660.
    [33] 李英强, 何登发. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化[J]. 石油学报, 2014, 35(2): 219-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402002.htm

    Li Y Q, He D F. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2014, 35(2): 219-232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402002.htm
    [34] 文芠, 赵兵. 四川蒲江-雅安地区自流井组地层特征及沉积相[J]. 地层学杂志, 2010, 34(2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201002017.htm

    Weng W, Zhao B. Stratigraphic characteristics and sedimentary facies of Ziliujing Formation in Pujiang-Ya'an area, Sichuan[J]. Journal of Stratigraphy, 2010, 34(2): 219-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201002017.htm
    [35] Weissert H, Lini A, Fllmi K B, et al. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 137(3): 189-203.
    [36] Woodfine R G, Jenkyns H C, Sarti M, et al. The response of two Tethyan carbonate platforms to the Early Toarcian (Jurassic) oceanic anoxic event: Environmental change and differential subsidence[J]. Sedimentology, 2008, 55(4): 1011-1028. doi: 10.1111/j.1365-3091.2007.00934.x
    [37] Dal Corso J, Mietto P, Newton R J, et al. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts[J]. Geology, 2012, 40(1): 79-82. doi: 10.1130/G32473.1
    [38] Dal Corso J, Gianolla P, Rigo M, et al. Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic)[J]. Earth-Science Reviews, 2018, 185: 732-750. doi: 10.1016/j.earscirev.2018.07.004
    [39] Sun Y D, Wignall P B, Joachimski M M, et al. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) crisis in South China[J]. Earth and Planetary Science Letters, 2016, 444(1): 88-100.
    [40] Dal Corso J, Gianolla P, Newton R J, et al. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event" in the Tethys realm (Late Triassic)[J]. Global & Planetary Change, 2015, 127: 79-90.
    [41] Mueller S, Hounslow M W, Kürschner W M. Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm: New data from the%Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway)[J]. Journal of the Geological Society, 2016, 173(1): 186-202. doi: 10.1144/jgs2015-028
    [42] Mueller S, Krystyn L, Kurschner W M. Climate variability during the Carnian Pluvial Phase: A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441(1): 198-211.
    [43] Masetti D, Figus B, Jenkyns H C, et al. Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: Evidence from the southern Alps (Northern Italy)[J]. Geological Magazine, 2016, 154: 1-26.
    [44] Riding J B, Leng M J, Kender S, et al. Isotopic and palynological evidence for a new Early Jurassic environmental perturbation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374(1): 16-27.
    [45] Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5738-5743. doi: 10.1073/pnas.0910513107
    [46] Arthur M A, Dean W E, Claypool G E. Anomalous 13C enrichment in modern marine organic carbon[J]. Nature, 1985, 315: 216-218. doi: 10.1038/315216a0
    [47] Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19691-19695.
    [48] Schubert B A, Jahren A H. Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levels[J]. Nature Communications, 2013, 4: 1653.
    [49] Farquhar G D, Ehleringer J R, Hubick K T, et al. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1989, 40(1): 503-538.
    [50] Grocke D R. The carbon isotope composition of ancient CO2 based on higher-plant organic matter[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2002, 360: 633-658.
    [51] Dal Corso J, Schmidt A R, Seyfullah L J, et al. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins[J]. Geochimica et Cosmochimica Acta, 2017, 199: 351-369.
    [52] Jahren A H, Nan C A, Harbeson S A. Prediction of atmospheric δ13CO2 using fossil plant tissues[J]. Reviews of Geophysics, 2008, 46(1): 1-12.
    [53] Preto N, Willems H, Guaiumi C, et al. Onset of significant pelagic carbonate accumulation after the Carnian Pluvial Event (CPE) in the western Tethys[J]. Facies, 2013, 59(4): 891.
    [54] Gardin S, Krystyn L, Richoz S, et al. Where and when the earliest coccolithophores?[J]. Lethaia, 2012, 45(4): 507-523.
    [55] Janz H, Vennemann T W. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 225(1/4): 216-247.
    [56] Jin X, Shi Z, Baranyi V, et al. The Jenkyns Event (Early Toarcian OAE) in the Ordos Basin, North China[J]. Global and Planetary Change, 2020, 193: 103273.
    [57] Dera G, Neige P, Dommergues J. High-resolution dynamics of Early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites(Cephalopoda)[J]. Journal of the Geologic Society of London, 2010, 167: 21-33.
    [58] 宋海军, 童金南, 熊炎林, 等. δ13Ccarb-深度梯度的剧增与二叠纪末生物大灭绝[J]. 中国科学: 地球科学, 2012, 42(8): 1182-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208005.htm

    Song H J, Tong J N, Xiong Y L, et al. The large increase of δ13Ccarb-depth gradient and the end-Permian mass extinction[J]. Science China: Earth Science, 2012, 42(8): 1182-1191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208005.htm
    [59] 单厚香, 王永标, 何磊, 等. 湖北崇阳二叠纪-三叠纪之交生物灭绝和沉积微相演化[J]. 地质科技情报, 2012, 31(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201005.htm

    Shan H X, Wang Y B, He L, et al. Mass extinction and evolution of sedimentary microfacies across the Permian-Triassic boundary in Chongyang, Hubei Province[J]. Geological Science and Technology Information, 2012, 31(1): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201005.htm
    [60] Olsen P E, Kent D V, Sues H D, et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary[J]. Science, 2002, 296: 1305-1307.
    [61] Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334: 1367-1372.
    [62] Ruhl M, Kürschner W M. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition[J]. Geology, 2011, 39(5): 431-434.
  • 加载中
图(4)
计量
  • 文章访问数:  346
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16

目录

    /

    返回文章
    返回