留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结合水膜厚度变化的红黏土收缩机理研究

张亚彬 左双英 吴道勇 杨国生

张亚彬, 左双英, 吴道勇, 杨国生. 基于结合水膜厚度变化的红黏土收缩机理研究[J]. 地质科技通报, 2023, 42(5): 241-248. doi: 10.19509/j.cnki.dzkq.2022.0079
引用本文: 张亚彬, 左双英, 吴道勇, 杨国生. 基于结合水膜厚度变化的红黏土收缩机理研究[J]. 地质科技通报, 2023, 42(5): 241-248. doi: 10.19509/j.cnki.dzkq.2022.0079
Zhang Yabin, Zuo Shuangying, Wu Daoyong, Yang Guosheng. Shrinkage mechanism of red clay based on changes in the thickness of bound water film[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 241-248. doi: 10.19509/j.cnki.dzkq.2022.0079
Citation: Zhang Yabin, Zuo Shuangying, Wu Daoyong, Yang Guosheng. Shrinkage mechanism of red clay based on changes in the thickness of bound water film[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 241-248. doi: 10.19509/j.cnki.dzkq.2022.0079

基于结合水膜厚度变化的红黏土收缩机理研究

doi: 10.19509/j.cnki.dzkq.2022.0079
基金项目: 

国家自然科学基金项目 42167025

贵州省科学技术厅社会发展科技攻关项目 黔科合支撑[2017]2866

详细信息
    作者简介:

    张亚彬(1992-), 男, 现正攻读地质工程专业硕士学位, 主要从事岩土体工程性质及应用方面的研究工作。E-mail: 942123318@qq.com

    通讯作者:

    左双英(1977-), 女, 教授, 主要从事层状岩体各项异性损伤试验、理论推导、数值模拟及岩土工程稳定性评价等方面的研究工作。E-mail: syzuo@gzu.edu.cn

  • 中图分类号: TU446

Shrinkage mechanism of red clay based on changes in the thickness of bound water film

  • 摘要:

    结合水的含量及存在形式对红黏土的物理力学性质具有重要影响, 而红黏土宏观收缩会引起土粒、孔隙、结合水微观结构变化, 进而可能产生土体浅表层开裂引发渗透、失稳等工程地质问题。采用热重分析试验、BET测试试验、电镜扫描和Zeta电位试验对原状红黏土收缩过程中结合水的变化特征进行了研究, 建立了基于结合水膜均匀分布下的球状和薄片状黏土颗粒结构模型, 并推导出结合水膜厚度的计算公式。研究结果表明, 原状红黏土中的水分大部分以结合水的形式存在, 红黏土的收缩过程一直贯穿着弱结合水的损失, Zeta电位和比表面积不断减小, 结合水膜厚度也不断减小。研究结果揭示了红黏土失水收缩的内在机理, 可为解决环境工程地质问题提供理论支持。

     

  • 图 1  X射线衍射图

    Figure 1.  X-ray diffraction pattern

    图 2  3种不同含水率的原状红黏土收缩曲线

    Figure 2.  Shrinkage curves of red clay of 3 different water contents

    图 3  红黏土热重曲线

    TG曲线代表土样质量随温度变化的损失率;DSC曲线代表土样质量损失随温度的变化速率

    Figure 3.  Thermogravimetric curve of red clay

    图 4  红黏土5 000倍下的SEM图片

    a. 初始阶段; b. 正常收缩阶段; c. 残余收缩阶段; d. 零收缩阶段

    Figure 4.  SEM images of red clay at 5 000 times

    图 5  红黏土不同收缩阶段等效孔径

    Figure 5.  Equivalent pore size of red clay at different stages of shrinkage

    图 6  不同收缩阶段的Zeta电位

    Figure 6.  Zeta potential at different stages of shrinkage

    图 7  试样BET比表面积曲线

    Figure 7.  BET specific surface curves for each specimens

    图 8  黏土双电层示意图

    Figure 8.  Schematic diagram of the bilayer of clay

    图 9  红黏土颗粒简化模型

    h. 球状结构红黏土的水薄厚度; t. 薄片状结构红黏土的水薄厚度;a′, b′, c′分别为薄片状结构的高、长、宽

    Figure 9.  Simplified model of red clay particles

    表  1  基本物理指标

    Table  1.   Basic physical indicators

    天然含水率/
    %
    相对密度 液限/
    %
    塑限/
    %
    干密度/
    (g·cm-3)
    孔隙比
    68.9 2.39 80.7 50.9 1.14 1.11
    下载: 导出CSV

    表  2  红黏土矿物成分

    Table  2.   Mineral composition of red clay

    矿物成分 埃洛石 高岭石 绿泥石 伊利石 氧化铁 氧化铝 其他
    wB/% 60.4 3.9 6.0 7.0 11.9 6.8 3.0
    注:其他主要包括结晶比较弱或者非晶矿物等物质
    下载: 导出CSV

    表  3  各收缩阶段蒸发水类型

    Table  3.   Type of evaporated water at each stage of shrinkage

    试样 质量含水率
    wB/%
    质量绝对含水率
    wB/%
    收缩阶段 自由水质量分数wB/% 弱结合水质量分数wB/% 强结合水质量分数wB/%
    S1 64.9 64.0 初始阶段 1.17
    正常收缩阶段 21.90
    残余收缩阶段 9.88
    零收缩阶段 15.53 5.92
    S2 69.5 69.1 初始阶段 1.07
    正常收缩阶段 27.35
    残余收缩阶段 8.67
    零收缩阶段 19.75
    下载: 导出CSV

    表  4  不同收缩阶段红黏土结合水膜厚度

    Table  4.   Thickness of the bonded water film of red clay at different stages of shrinkage

    收缩阶段 吸附水含水量wB/% 比表面积
    Sg/
    (m2·g-1)
    结合水密度
    ρw/
    (g·cm-3)
    结合水膜的厚度
    h/nm
    初始阶段 64.9 20.202 1.783 18.018
    正常收缩阶段 46.6 19.524 1.787 13.356
    残余收缩阶段 35.7 18.128 1.791 10.996
    零收缩阶段 24.0 16.885 1.793 7.927
    下载: 导出CSV
  • [1] 廖义玲, 朱立军. 贵州碳酸盐岩红土[M]. 贵阳: 贵州人民出版社, 2004.

    Liao Y L, Zhu L J. Carbonate laterites of Guizhou[M]. Guiyang: Guizhou People's Publishing House, 2004(in Chinese).
    [2] 朱建群, 易亮, 龚琰, 等. 贵州红黏土的胀缩性与水敏性研究[J]. 湖南科技大学学报: 自然科学版, 2016, 31(4): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201604007.htm

    Zhu J Q, Yi L, Gong Y, et al. Study on the swelling and shrinking properties and water sensitivity of red clay in Guizhou[J]. Journal of Hunan University of Science and Technology: Natural Science Edition, 2016, 31(4): 35-39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201604007.htm
    [3] 赵成刚, 白一冰, 王运霞. 土力学原理[M]. 北京: 清华大学出版社, 2004.

    Zhao C G, Bai Y B, Wang Y X. Principles of soil mechanics[M]. Beijing: Tsinghua University Press, 2004(in Chinese).
    [4] 余敦猛, 杨果林, 方薇. 武广客专红黏土变形特性及形成机理研究[J]. 武汉理工大学学报2010, 34(6): 1255-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201006045.htm

    Yu D M, Yang G L, Fang W. Study on the deformation characteristics and formation mechanism of red clay for the Wuhan-Guangzhou Passenger Highway[J]. Journal of Wuhan University of Technology 2010, 34(6): 1255-1259(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201006045.htm
    [5] 穆锐, 黄质宏, 姚未来, 等. 分级循环荷载下原状红黏土动力特性试验研究[J]. 水文地质工程地质, 2022, 49(3): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203010.htm

    Mu R, Huang Z H, Yao W L, et al. An experimental study of the dynamic characteristics of the undisturbed laterite under graded cyclic loading[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 94-102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203010.htm
    [6] Krzywoblocsi M Z. On the fundamentals of the boundary layer theory[J]. Pergamon, 1953, 255(4): 289-299.
    [7] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    Li G X. Advanced geomechanics[M]. Beijing: Tsinghua University Press, 2004(in Chinese).
    [8] 陈宗淇, 王光信, 徐桂英. 胶体与界面化学[M]. 北京: 高等教育出版社, 2001.

    Chen Z Q, Wang G X, Xu G Y. Colloid and interface chemistry[M]. Beijing: Higher Education Press, 2001(in Chinese).
    [9] Pyper J W. 应用微波方法测量有机材料中的结合水分和游离水分[J]. 国外科技资料, 1992(10): 87-95.

    Pyper J W. Application of microwave methods to the measurement of bound and free moisture in organic materials[J]. Foreign Science and Technology Information, 1992(10): 87-95(in Chinese with English abstract).
    [10] Prost R, Koutit T, Benchara A. State and location of water absorbed on clay minerals: Consequences of the hydration and swelling-shrinkage phenomena[J]. Clays and Clayminerals, 1998, 146(5): 297-302.
    [11] Bridgeman C H, Skipper N T. A Monte Carlo study of water at an uncharged clay surface[J]. Journal of Physics, 1997, 9(20): 4081-4087.
    [12] Tone K, Kamori M, Shibasaki Y. Adsorbed cations and water film thickness on the kaolinitic clay surface[J]. Journal of the Ceramic Society of Japan, 1993, 101(12): 1395-1399.
    [13] 吴凤彩. 黏性土吸附结合水容重测量[J]. 水利水运科学研究, 1987(4): 69-74.

    Wu F C. Measurement of adsorbed combined water capacity of clayey soils[J]. Water Resources and Water Transport Scientific Research, 1987(4): 69-74(in Chinese with English abstract).
    [14] 王平全. 黏土表面结合水定量分析及水合机制研究[D]. 成都: 西南石油学院, 2001.

    Wang P Q. Quantitative analysis of water binding on clay surface and study of hydration mechanism[D]. Chengdu: Southwest Petroleum Institute, 2001(in Chinese with English abstract).
    [15] 王铁行, 李彦龙, 苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-948. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm

    Wang T X, Li Y L, Su L J. Classification of types and boundaries of adsorbed bound water on loess surfaces[J]. Journal of Geotechnical Engineering, 2014, 36(5): 942-948(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm
    [16] 何攀, 许强, 刘佳良, 等. 基于核磁共振技术的结合水含量对重塑黄土抗剪强度影响试验研究[J]. 山地学报, 2020, 38(4): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202004009.htm

    He P, Xu Q, Liu J L, et al. Experimental study on the effect of combined water content on the shear strength of remodeled loess based on nuclear magnetic resonance technique[J]. Journal of Mountain Science, 2020, 38(4): 571-580(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202004009.htm
    [17] 苏俊霖, 董汶鑫, 冯杰, 等. 黏土表面结合水的低场核磁共振定量研究[J]. 钻井液与完井液, 2018, 35(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW201801002.htm

    Su J L, Dong W X, Feng J, et al. Quantitative study of low-field NMR of clay surface bound water[J]. Drilling and Completion Fluids, 2018, 35(1): 8-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW201801002.htm
    [18] Dao M H. 膨润土缓冲回填材料干裂特性及缩裂机制研究[D]. 武汉: 中国地质大学(武汉), 2019.

    Dao M H. Study on dry cracking characteristics and shrinkage cracking mechanism of bentonite buffer backfill materials[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
    [19] Kucerik J, Siewert C. Practical application of thermogravimetry in soil science[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2): 563-570.
    [20] Wan K, Ji P, Miao Z Y, et al. Analysis of water forms in lignite and pore size distribution measurement utilizing bound water as a molecular probe[J]. Energy Weekly News, 2017, 31(11): 884-891.
    [21] Chauhan R, Kumar R, Diwan P K, et al. Thermogravimetric analysis and chemometric based methods for soil examination: Application to soil forensics[J]. Forensic Chemistry, 2020, 17: 100191.
    [22] Zhang R, Xiao Y P, Wu M L, et al. Measurement and engineering application of adsorbed water content in fine-grained soils[J]. Journal of Central South University, 2021, 28(5): 1555-1569.
    [23] 韩博, 鲁光银, 曹函, 等. 基于图像处理技术的聚合物水基钻井液微观结构分形研究[J]. 地质科技情报, 2018, 37(2): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802030.htm

    Han B, Lu G Y, Cao H, et al. Study on microstructure fractalization of polymeric water-based drilling fluid based on image processing technology[J]. Geological Science and Technology Information, 2018, 37(2): 221-228(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802030.htm
    [24] 彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

    Peng S Q, Ke L, Zheng T, et al. Exploration of debris flow particle distribution characteristics and debris flow-housing interaction based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0622
    [25] 井旭, 谢婉丽, 单帅. 原状及重塑黄土双轴试验微观力学特征离散元模拟[J]. 地质科技通报, 2021, 40(3): 184-193. doi: 10.19509/j.cnki.dzkq.2021.0311

    Jing X, Xie W L, Shan S. Discrete element simulation of micromechanical characteristics of in-situ and remodeled loess biaxial tests[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 184-193(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0311
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  315
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 录用日期:  2022-02-11
  • 修回日期:  2022-01-10

目录

    /

    返回文章
    返回