Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs
-
摘要:
能源是经济社会长期稳定发展的有力保障。同时, 我国也进入了生态文明建设的关键时期。为实现此目标, 亟需建设清洁、低碳、高效、多元的现代能源体系。干热岩型地热作为一种新兴的环境友好型资源, 有望推进能源结构转型。开发干热岩需要建立增强型地热系统, 其核心是向储层钻井并压裂形成一定规模的裂缝网络, 构建井间循环回路来提取热能发电。20世纪70年代以来, 多个发达国家先后进行干热岩资源开发尝试, 然而受到人工热储建造和诱发地震防控等关键技术的限制, 成功运行的EGS工程屈指可数。近些年来, 干热岩资源的优越性和规模化开发可行性进一步得到国际社会的认可, 投入建设的EGS数量总体上不断增加。水力压裂是建造人工热储的核心技术手段之一, 水力裂缝的形态直接决定了换热体积和取热效率。本文在分析国内外典型EGS压裂案例的基础上, 总结了干热岩水力压裂的工艺特点。此外, 结合几种较为流行的理论模型和我国首例EGS工程——共和盆地恰卜恰干热岩试采工程的实际情况, 简要阐述了干热岩压裂与诱发地震之间的关系。最后从压裂工艺、智能化开发、微地震监测矩张量反演等方面为干热岩水力压裂向更深层次发展提出建议。
Abstract:Energy is a powerful guarantee for the long-term stable development of the economy and society. At the same time, China has also entered a critical period of ecological civilization construction. To achieve this goal, it is urgent to build a clean, low-carbon, efficient, and diversified modern energy system. As new environment-friendly energy, hot dry rock (HDR) is expected to promote the energy mix transition. The development of HDR requires the establishment of an enhanced geothermal system(EGS). It is to build an well circulation to extract thermal energy for power generation after drilling and hydraulic fracturing. Since the 1970s, many developed countries have tried to develop HDR successively. However, limited by key technologies, such as artificial heat storage construction and induced earthquake prevention, few EGS projects have been successfully operated. In recent years, as the advantages and the large-scale development feasibility of HDR are gradually recognized by the international society, the number of EGS is increasing generally. Hydraulic fracturing is one of the core technologies to build the geothermal reservoir, which directly determines the heat transfer volume and the heat transfer efficiency. Based on the analysis of typical EGS cases at home and abroad, the characteristics of HDR hydraulic fracturing are summarized. Moreover, combined with several popular theoretical models and the actual situation of the first EGS (Qiabuqia HDR) in China, the relationship between the HDR fracturing and the induced earthquake is briefly described. From the point of view of fracturing technology, intelligent development, and micro-seismic moment tensor inversion, the suggestions for further development of HDR fracturing are presented.
-
图 1 EE-2、EE-3(含侧钻井)井身结构及压裂微震分布示意图(据文献[15]修编)
Figure 1. Schematic diagram of the well structure and fracturing microseismic distribution of EE-2 and EE-3(in cluding side drilling)
图 2 Soultz EGS工程开发井井轨迹示意图(据参考文献[17]修编)
Figure 2. Schematic diagram of the development well trajectory of Soultz EGS project
图 3 Cooper Basin EGS工程压裂造储微地震云示意图[23]
Figure 3. Schematic diagram of microseismic cloud generated by fracturing in Cooper Basin EGS project
图 4 Helsinki EGS工程水力压裂微地震监测示意图(据文献[29]修编)
Figure 4. Schematic diagram of hydraulic fracturing microseismic monitoring of Helsinki EGS project
图 5 桥塞、封隔器使用前后对比[32]
Figure 5. Comparison of bridge plugs and packers before and after fracturing
图 7 水力压裂诱发地震的机理示意图(据文献[41])
Figure 7. Schematic diagram of the mechanism of hydraulic fracturing induced earthquakes
图 10 McGarr模型中注液量与最大震级之间的关系[41]
Figure 10. Relationship between liquid injection volume and maximum magnitude in McGarr model
表 1 典型EGS工程压裂参数及诱发地震情况表
Table 1. Hydraulic fracturing parameters and induced earthquake of the typical EGS projects
项目 开发模式 压裂改造井号(年份) 液量/万m3 排量/(m3·min-1) 井口压力分布情况 诱发最大震级和发生时间 Cooper Basin 一注一采 H01(2003) 2.000 0~1.5 45~90 MPa 压裂过程中最大震级ML 3.7 H01(2005) 0.380 0~1.5 H04(2012) 0.260 1.3~3.6 H04(2012) 3.400 1.3~3.6 Soultz 三井模式 GPK2(2000) 2.800 0~3 10~60.5 MPa 停泵后一个月内发生ML 2.9地震 GPK2(2000) 2.340 0~3 GPK3(2003) 3.400 0~3 GPK4 (2004) 0.940 1.8~2.7 (2005) 1.230 1.8~2.7 Pohang 计划建成三井模式 PX-2(2016) 1.280 0~4.5 最大89.2 MPa 停泵后6个月发生Mw 5.5级地震,压裂过程中最大震级Mw 2.9 PX-1(2016-2017) 0.390 0~2.81 最大27.7 MPa Fenton Hill 一注一采 EE-2(多次压裂) 2.130 0~6.48 45~90 MPa EE-3(多次压裂) 7.590 0~1.4 Helsinki 一注一采 OTN-3(2018) 1.816 0.4~0.8 60~90 MPa 压力过程中最大Mw1.9级 注:Mw表示矩震级; ML表示里氏震级 -
[1] 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学: 中国地质大学学报, 2015, 40(11): 1858-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htmLi D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(11): 1858-1869(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm [2] 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012Xu T F, Hu Z X, Li S T, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 92(9): 1936-1947(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.09.012 [3] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review, 2012, 30(32): 25-31(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.002 [4] 雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 2020.Lei Z H. Study on the characteristics of hot dry rock reservoir and fracturing test model in the Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 2020(in Chinese with English abstract). [5] Tester J W, Anderson B J, Batchelor A S, et al. The future of geothermal energy: Impact of enhanced geothermal systems[EGS]on the United States in the 21st century[R]. Boston, USA: Massachusetts Institute of Technology, 2006. [6] 自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告(2018)[M]. 北京: 中国石化出版社, 2018.China Geological Survey of Ministry of Natural Resources, Department of New and Renewable Energy of National Energy Administration, Institutes of Science and Development of Chinese Academy of Sciences, et al. China geothermal energy development report: 2018[M]. Beijing: China Petrochemical Press, 2018(in Chinese). [7] 窦斌, 高辉, 周刚, 等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报, 2014, 33(5): 208-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htmDou B, Gao H, Zhou G, et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information, 2014, 33(5): 208-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm [8] 王贵玲, 马峰, 蔺文静, 等. 干热岩资源开发工程储层激发研究进展[J]. 科技导报, 2015, 33(11): 103-107. doi: 10.3981/j.issn.1000-7857.2015.11.018Wang G L, Ma F, Lin W J, et al. Reservoir stimulation in hot dry rock resource development[J]. Science and Technology Review, 2015, 33(11): 103-107(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2015.11.018 [9] 陈作, 许国庆, 蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201906002.htmChen Z, Xu G Q, Jiang M Q. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201906002.htm [10] McClure M W, Horne R N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 72: 242-260. [11] 张森琦, 文冬光, 许天福, 等. 美国干热岩"地热能前沿瞭望台研究计划"与中美典型EGS场地勘查现状对比[J]. 地学前缘, 2019, 26(2): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902030.htmZhang S Q, Wen D G, Xu T F, et al. The U.S. frontier observatory for research in geothermal energy project and comparison of typical EGS site exploration status in China and U. S[J]. Earth Science Frontiers, 2019, 26(2): 321-334(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902030.htm [12] Norbeck J H, McClure M W, Horne R H. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics, 2018, 74: 135-149. doi: 10.1016/j.geothermics.2018.03.003 [13] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报: 地球科学版, 2016, 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htmXu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 1139-1152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm [14] Brown D W, Duchane D V. Scientific progress on the Fenton Hill HDR project since 1983[J]. Geothermics, 1999, 28: 591-601. doi: 10.1016/S0375-6505(99)00030-9 [15] Kelkar S, WoldeGabriel G, Rehfeldt K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14. doi: 10.1016/j.geothermics.2015.08.008 [16] Baria R, Baumga Èrtner J, GeÂrard A, et al. European HDR research programme at Soultz-sous-Forêts(France) 1987-1996[J]. Geothermics, 1999, 28: 655-669. doi: 10.1016/S0375-6505(99)00036-X [17] Cuenot N, Charle'ty J, Dorbath L, et al. Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France[J]. Geothermics, 2006, 35: 561-575. doi: 10.1016/j.geothermics.2006.11.007 [18] Cuenot N, Dorbath C, Dorbath L. Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts(Alsace, France): Implications for the characterization of the geothermal reservoir properties[J]. Pure and Applied Geophysics, 2008, 165: 797-828. doi: 10.1007/s00024-008-0335-7 [19] Genter A, Evans K, Cuenot N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems(EGS)[J]. Comptes Rendus Geoscience, 2010, 342: 502-516. doi: 10.1016/j.crte.2010.01.006 [20] Charle'ty J, Cuenot N, Dorbath L, et al. Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44: 1091-1105. [21] Didana Y L, Heinson G, Thiel S, et al. Magnetotelluric monitoring of permeability enhancement at enhanced geothermal system project[J]. Geothermics, 2017, 66: 23-38. doi: 10.1016/j.geothermics.2016.11.005 [22] Baisch S, Rothert E, Stang H, et al. Continued feothermal reservoir stimulation experiments in the Cooper Basin(Australia)[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 198-209. doi: 10.1785/0120140208 [23] Humphreys B, Ward G. Habanero geothermal project field development plan[R]. Geodynamics Limited, 2014. [24] Baisch S, Weidler R, Vörös R, et al. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia[J]. Bulletin of the Seismological Society of America, 2006, 96(6): 2242-2256. doi: 10.1785/0120050255 [25] Kim H, Xie L M, Min K B, et al. Integrated in situ stress estimation by hydraulic fracturing, borehole observations and numerical analysis at the EXP-1 borehole in Pohang, Korea[J]. Rock Mechanics and Rock Engineering, 2017, 50: 3141-3155. doi: 10.1007/s00603-017-1284-1 [26] Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea[J]. Science, 2018, 360: 1003-1006. doi: 10.1126/science.aat2010 [27] Kim K H, Ree J H, Kim Y H, et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event[J]. Science, 2018, 360: 1007-1009. doi: 10.1126/science.aat6081 [28] Kim K, Min K B, Kim K Y, et al. Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 1182-1191. doi: 10.1016/j.rser.2018.04.062 [29] Kwiatek G, Saarno T, Ader T, et al. Controlling fluid-induced seismicity during a 6.1 km deep geothermal stimulation in Finland[J]. Science Advances, 2019, 5: eaav7224. doi: 10.1126/sciadv.aav7224 [30] BalamirO, Rivas E, Rickard W M, et al. Utah FORGE reservoir: Drilling results of deep characterization and monitoring well 58-32[C]//43rd Workshop on Geothermal Reservoir Engineering, Stanford, USA, 2018. [31] Kraal K O, Ayling B F, Blake K, et al. Linkages between hydrothermal alteration, natural fractures, and permeability: Integration of borehole data for reservoir characterization at the Fallon FORGE EGS site, Nevada USA[J]. Geothermics, 2021, 89: 101946. doi: 10.1016/j.geothermics.2020.101946 [32] Moore J, McLennan J, Allis R, et al. The Utah frontier observatory for research in geothermal energy(FORGE): An international laboratory for enhanced geothermal system technology development[C]//44th Workshop on Geothermal Reservoir Engineering, California, USA, 2019. [33] Nadimi S, Forbes B, Moore J, et al. Utah FORGE: Hydrogeothermal modeling of a granitic based discrete fracture network[J]. Geothermics, 2020, 87: 101853. doi: 10.1016/j.geothermics.2020.101853 [34] Lu J R, Ghassemi A. Estimating natural fracture orientations using geomechanics based stochastic analysis of microseismicity related to reservoir stimulation[J]. Geothermics, 2019, 79: 129-139. doi: 10.1016/j.geothermics.2019.01.003 [35] 肖勇. 增强地热系统中干热岩水力剪切压裂THMC耦合研究[D]. 成都: 西南石油大学, 2017.Xiao Y. Study on THMC coupling of hydro-shearing in hot dry rock in enhanced geothermal system[D]. Chengdou: Southwest Petroleum University, 2017(in Chinese with English abstract). [36] 周长冰. 高温岩体水压致裂钻孔起裂与裂缝扩展机理及其应用[D]. 江苏徐州: 中国矿业大学, 2017.Zhou C B. Mechanism of hydraulic fracture borehole's fracture initiation and propagation for the high-temperature rock mass and its application[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2017(in Chinese with English abstract). [37] Xie J Y, Cheng W, Wang R J, et al. Experiments and analysis on the influence of perforation mode on hydraulic fracture geometry in shale formation[J]. Journal of Petroleum Science and Engineering, 2018, 168: 133-147. doi: 10.1016/j.petrol.2018.05.017 [38] Olasolo P, Juarez M C, Morales M P, et al. Enhanced geothermal systems(EGS): A review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144. doi: 10.1016/j.rser.2015.11.031 [39] 解经宇, 叶成明, 金显鹏, 等. 编织深部热能的"捕获网": 干热岩水力压裂[J]. 国土资源科普与文化, 2020, 23(2): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GTKW202002006.htmXie J Y, Ye C M, Jin X P, et al. Weaving a "capture net" of deep thermal energy: Hydraulic fracturing of hot dry rock[J]. Scientific and Cultural Popularization of Land and Resources, 2020, 23(2): 22-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTKW202002006.htm [40] vanderElst N J, Page M T, Weiser D A, et al. Induced earthquake magnitudes are as large as(statistically) expected[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4575-4590. doi: 10.1002/2016JB012818 [41] Eyre T S, Eaton D W, Garagash D I, et al. The role of aseismic slip in hydraulic fracturing-induced seismicity[J]. Science advances, 2019, 5: eaav7172. doi: 10.1126/sciadv.aav7172 [42] 解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103008.htmXie J Y, Lu H Z, Chen L, et al. Microscopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103008.htm [43] 许天福, 张延军, 于子望, 等. 干热岩水力压裂实验室模拟研究[J]. 科技导报, 2015, 33(19): 35-39. doi: 10.3981/j.issn.1000-7857.2015.19.004Xu T F, Zhang Y J, Yu Z W, et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science and Technology Review, 2015, 33(19): 35-39(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2015.19.004 [44] Atkinson G M, Eaton D W, Igonin N, et al. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth and Environment, 2020, 1: 264-277. doi: 10.1038/s43017-020-0049-7 [45] Bentz S, Kwiatek G, Martínez-Garzón P, et al. Seismic moment evolution during hydraulic stimulations[J]. Geophysical Research Letters, 2020, 47, e2019GL086185. [46] McGarr A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 2014, 119: 1008-1019. doi: 10.1002/2013JB010597 [47] Galis M, Ampuero J P, Martin M P, et al. Induced seismicity provides insight into why earthquake ruptures stop[J]. Science Advances, 2017;3: eaap7528. doi: 10.1126/sciadv.aap7528 [48] 郭亮亮. 增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D]. 长春: 吉林大学, 2016.Guo L L. Test and model research of hydraulic fracturing and reservoir damage evolution in enhanced geothermal system[D]. Changchun: Jilin University, 2016(in Chinese with English abstract). [49] Kumari W G P, Ranjith P G, Perera M S A. Experimental investigation of quenching effect on mechanical, micro-structural and flow characteristics of reservoir rocks: Thermal stimulation method for geothermal energy extraction[J]. Journal of Petroleum Science and Engineering, 2018, 162: 419-433. doi: 10.1016/j.petrol.2017.12.033 [50] Zhou C B, Wan Z J, Zhang Y, et al. Experimental study on hydraulic fracturing of granite under thermal shock[J]. Geothermics, 2018, 71: 146-155. doi: 10.1016/j.geothermics.2017.09.006 [51] 陈桂, 刘洋. 基于人工智能的断层自动识别研究进展[J]. 地球物理学进展, 2021, 36(1): 119-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101012.htmChen G, Liu Y. Research progress of automatic fault recognition based on artificial intelligence[J]. Progress in Geophysics, 2021, 36(1): 119-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101012.htm [52] Li S D, Zhou Z M, Li X, et al. One CT imaging method of fracture intervention in rock hydraulic fracturing test[J]. Journal of Petroleum Science and Engineering, 2017, 156: 582-588. doi: 10.1016/j.petrol.2017.06.050 [53] 刘建超. 压裂支撑剂智能化测量系统的研究[D]. 山东青岛: 中国石油大学(华东), 2017.Liu J C. Study on intelligent measurement system of fracturing proppant[D]. Shangdong Qingdao: China University of Petroleum, 2017(in Chinese with English abstract). [54] 薛卉, 舒彪, 陈科平, 等. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103005.htmXue H, Shu B, Chen K P, et al. Research progress of fluid-granite interaction in CO2 based enhanced geothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 45-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103005.htm [55] 吴顺川, 黄小庆, 陈钒, 等. 岩体破裂矩张量反演方法及其应用[J]. 岩土力学, 2016, 37(增刊1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1001.htmWu S C, Huang X Q, Chen F, et al. Moment tensor inversion of rock failure and its application[J]. Rock and Soil Mechanics, 2016, 37(S1): 1-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1001.htm [56] 刘培洵, 陈顺云, 郭彦双, 等. 声发射矩张量反演[J]. 地球物理学报, 2014, 57(3): 858-866. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403015.htmLiu P X, Chen S Y, Guo Y S, et al. Moment tensor inversion of acoustic emission[J]. Chinese Journal of Geophysics, 2014, 57(3): 858-866(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403015.htm [57] 刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htmLiu D M, Zhang C S, Sun M X, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm