500-year growth cycle of stalagmite and its response to regional hydrological changes in Heshang cave, western Hubei
-
摘要:
洞穴石笋是目前高分辨率古气候研究的重要载体,拥有丰富的物理、化学及微生物类古气候重建指标。其中,与环境关系密切的石笋生长速率因具有数据采集简便、快捷、经济等优点而应用广泛,但由于影响因素复杂,其气候指示意义仍存在较大的不确定性。本研究利用前人高分辨率年代数据建立了鄂西和尚洞HS4石笋8.8 ka BP以来的生长速率序列,发现,该石笋在8.8~5.0 ka BP之间生长速率低于整根石笋的生长速率,其平均值仅为236
μ m/a,而5.0 ka BP以来生长速率较之前增加1.5倍,平均达到334μ m/a。我们发现,从表象上,石笋生长速率在千年尺度上的变化趋势与指标重建的区域夏季风强度呈负相关关系,但与厄尔尼诺事件的发生频率呈正相关关系。频谱分析显示该石笋的生长速率变化呈500年周期特征,与太阳活动周期及其与厄尔尼诺与南方涛动(ENSO)活动共同影响下的区域强降水事件发生周期一致,且在部分时段两者呈同相位变化,即强降水频繁时期该石笋的生长速率更快。结合区域温度、水文特征、季风强度以及古El Niño事件发生频率记录,本研究认为HS4石笋的生长速率主要响应太阳活动及ENSO活动控制下当地有效降水量的变化,即降雨量大(小)则生长速率高(低)。Abstract:Stalagmitesare important high-resolution paleoclimate archives, and possess abundant physical, chemical and microbial paleoclimate proxies. Among of them, the growth rate (GR)of stalagmites quite popular because its easy access and non-destruction.However, the environmental implicationsof GR are still ambiguous due to the complex influence factors. Here we established the GR series span past 8.8 ka of HS4 stalagmite came from the Heshang Cave located in the middle reaches of Yangtze River. It was found that the GR of HS4 stalagmite showed two stages in the millennial timescale: the low and stable GR duration between 8.8 and 5.0 ka BP and the high and fluctuated GR duration since 5.0 ka BP. Above millennial variation is negative correlated with the intensity of regional summer monsoon and positive correlated with the frequency of El Nino and regional paleo-hydrological condition. The GR of HS4 stalagmite exhibited a significant 500-year cycle with confidence level more than 99%. The centennial periodic GR variation coincide well with the occurrence of regional heavy precipitation with the higher frequency of heavy precipitation correspond to the faster GR, and this correlation is especially significant in the Late Holocene. but which was forcing by considering the regional precipitation in millennial and centennial time scale were mainly affected direct or indirectly by the solar radiation and El Nino-Southern Oscillation (ENSO) activity, we conclude that the GR of HS4 stalagmite is mainly controlled by the regional effective precipitation forcing by the solar radiation and ENSO activity, showing the greater the rainfall the faster the growth rate.
-
Key words:
- stalagmite /
- growth rate /
- ENSO /
- middle reaches of the Yangtze River /
- spectrum analysis
-
图 2 HS4生长速率与65°N夏季太阳辐射变化、夏季风强度、2个El Nino记录以及长江中游地区全新世古水文记录的比较
a.HS4石笋生长速率变化曲线,图中虚线为HS4石笋生长速率在5.0 ka BP前后的均值对比曲线; b.厄瓜多尔Pallcacocha湖泊沉积物和Northern Line群岛珊瑚化石的El Niño记录(数据分别来自文献[50-51]); c.HS4石笋氧同位素和青海湖孢粉指示的夏季风强度SMI指数(数据源自文献[52]); d.65°N夏季太阳辐射变化曲线(数据源自文献[53])以及大九湖泥炭生物标志物BNA15(数据源自文献[54]); e.长江中游地区全新世古水文记录: 大九湖泥炭霍烷质量分数(数据源自文献[55]),高(低)对应干(湿)气候时期和HS4石笋中软磁组分通量记录(数据源自文献[44])
Figure 2. Comparison of HS4 growth rate with 65°N summer solar radiation, summer monsoon intensity, two El Nino records and Holocene paleo-hydrological records in the middle reaches of the Yangtze River
图 3 区域降水量变化与生长速率频谱分析结果
a.石笋HS4软磁组分通量(区域强降水事件指标)功率谱分析(数据源自文献[44]); b.石笋HS4生长速率功率谱分析; c.石笋HS4软磁组分通量和HS4生长速率500年带通滤波结果(去除35%趋势)
Figure 3. Regional precipitation change and growth rate spectrum analysis results
-
[1] Wang Y J, Cheng H, Edwards R L, et al. A high resolution absolute dated late pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618 [2] Wang Y J, Cheng H, Edwards R L, et al. Millennial and orbital-scale changes in the East Asian monsoon over the past 224 000 years[J]. Nature, 2008, 451(7182): 1090-1903. doi: 10.1038/nature06692 [3] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220 [4] Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite inferred Indian monsoon precipitation over the past 252 000 y[J]. Proceedings of the National Academy of Sciences, 2015, 10(112): 2954-2959. [5] Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. Science, 2009, 326(5950): 248-252. doi: 10.1126/science.1177840 [6] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640 000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591 [7] Du W J, Cheng H, Xu Y, et al. Timing and structure of the weak Asian Monsoon event about 73 000 years ago[J]. Quaternary Geochronology, 2019, 53: 101003. doi: 10.1016/j.quageo.2019.05.002 [8] Yang X L, Yang H, Wang B Y, et al. Early holocene monsoon instability and climatic optimum recorded by Chinese stalagmites[J]. The Holocene, 2019, 29(6): 1059-1067. doi: 10.1177/0959683619831433 [9] 胡超涌, 黄俊华, 杨冠青, 等. 湖北清江石笋的碳氧同位素组成及其古气候意义[J]. 矿物岩石地球化学通报, 2001, 20(4): 388-390. doi: 10.3969/j.issn.1007-2802.2001.04.051Hu C Y, Huang J H, Yang G Q, et al. Carbon and oxygen isotopic composition in a stalagmite from Qingjiang, Hubei, and their paleoclimatic significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 388-390(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2001.04.051 [10] Zhang H B, Griffiths M L, Chiang J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580-583. doi: 10.1126/science.aat9393 [11] 杨勋林, 袁道先, 张月明, 等. 湖北仙女山人工隧洞现代石笋气候学: 灰度及其指示意义[J]. 中国岩溶, 2012, 31(3): 248-252. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201203004.htmYang X L, Yuan D X, Zhang Y M, et al. Grayscale and climatic instructions of modern stalagmite from artificial tunnel inside the Fairy Hill in Hubei[J]. Carsologica Sinica, 2021, 31(3): 248-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201203004.htm [12] Chen Q, Zhang T W, Wang Y T, et al. Magnetism signals in a stalagmite from southern China and reconstruction of paleorainfall during the interglacial-glacial transition[J]. Geophysical Research Letters, 2019, 46(12): 6918-6925. doi: 10.1029/2019GL082204 [13] Chou Y M, Jiang X, Liu Q, et al. Multidecadally resolved polarity oscillations during a geomagnetic excursion[J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8913-8918. doi: 10.1073/pnas.1720404115 [14] 张伟宏, 汪永进, 吴江滢, 等. 南京葫芦洞石笋微量元素记录的末次冰消期气候变化[J]. 第四纪研究, 2014, 34(6): 1227-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201406011.htmZhang W H, Wang Y J, Wu J Y, et al. Last deglacial climate variations inferred from trace elements in a stalagmite from Hulu cave, NanJing[J]. Quaternary Sciences, 2014, 34(6): 1227-1237(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201406011.htm [15] 王灿发. 细菌3-羟基脂肪酸环境代用新指标的构建及其在石笋中的应用[D]. 武汉: 中国地质大学(武汉), 2016.Wang C F. Novel environmental proxies based on bacterial 3-hydroxyfatty acids and thdr applicati ons in stalagmite[D]. Wuhan: China University of Geosciences(Wuhan), 2016(in Chinese with English abstract). [16] Li X L, Cui X P, He D, et al. Evaluation of the Heshang cave stalagmite calcium isotope composition as a paleohydrologic proxy by comparison with the instrumental precipitation record[J]. Entific Reports, 2018, 8(1): 2615. [17] Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite[J]. Nature, 1993, 364(6437): 518-520. doi: 10.1038/364518a0 [18] 刘东生, 谭明, 秦小光, 等. 洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J]. 第四纪研究, 1997, 17(1): 41-51. doi: 10.3321/j.issn:1001-7410.1997.01.006Liu D S, Tan M, Qin X G, et al. Discovery of microbedding in speleothems in China and its significance in the study of global change[J]. Quaternary Sciences, 1997, 17(1): 41-51(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.1997.01.006 [19] Brook G A, Sheen S W, Rafter M A, et al. A high resolution proxy record of rainfall and ENSO since AD 1 550 from layering in stalagmites fromAnjohibe Cave, Madagascar[J]. Holocene, 1999, 9(6): 695-705. doi: 10.1191/095968399677907790 [20] Railsback L B, Brook G A, Chen J, et al. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite[J]. Journal of Sedimentary Research, 2011, 64(1): 147-155. [21] Proctor C J, Baker A, Barnes W L, et al. A thousand year speleothem proxy record of North Atlantic climate from Scotland[J]. Climate Dynamics, 2000, 16(10/11): 815-820. [22] 明艳芳. 末次冰消期东亚夏季风突变性的石笋年纹层记录[J]. 南京师范大学学报: 自然科学版, 2003, 26(3): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSF200303016.htmMing Y F. Abrupt character of the East Asian Summer Monsoon recorded in the annual layer thickness of stalagmites during the Last deglaciation[J]. Journal of Nanjing Normal University: Natural Science, 2003, 26(3): 95-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJSF200303016.htm [23] 张美良, 朱晓燕, 李涛, 等. 桂林现代洞穴碳酸盐: 石笋的沉积速率及其环境意义[J]. 海洋地质与第四纪地质, 2011, 31(1): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201101019.htmZhang M L, Zhu X Y, Li T, et al. Study on sedimentation rate of modern cave stalagmite carbonate(CaCO3) deposits and its environmental significance: A case from Panlong cave, Guilin, China[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 125-133(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201101019.htm [24] 汪永进, 孔兴功, 邵晓华, 等. 末次盛冰期百年尺度气候变化的南京石笋记录[J]. 第四纪研究, 2002, 22(3): 243-251. doi: 10.3321/j.issn:1001-7410.2002.03.007Wang Y J, Kong X G, Shao X H, et al. Century scale climate oscillations during the last glacial maximum recorded in a stalagmite from NanJing[J]. Quaternary Sciences, 2002, 22(3): 243-251(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2002.03.007 [25] 邵晓华, 汪永进, 孔兴功, 等. 南京葫芦洞石笋生长速率及其气候意义讨论[J]. 地理科学, 2003, 23(3): 304-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200303008.htmShao X H, Wang Y J, Kong X G, et al. Approach to the growth rate and the climatic significance of stalagmites in Hulu cave, Nanjing[J]. Scientia Geographica Sinica, 2003, 23(3): 304-309(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200303008.htm [26] 何潇, 王建力, 李清, 等. 重庆地区石笋沉积速率与古气候意义初探[J]. 中国岩溶, 2007, 26(3): 196-201. doi: 10.3969/j.issn.1001-4810.2007.03.002He X, Wang J L, Li Q, et al. Growth rate and the paleoclimatic significance of stalagmites in Chongqing[J]. Carsologica Sinica, 2007, 26(3): 196-201(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2007.03.002 [27] Frisia S, Borsato A, Preto N, et al. Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate[J]. Earth and Planetary Science Letters, 2003, 216(3): 411-424. doi: 10.1016/S0012-821X(03)00515-6 [28] 谭明, 侯居峙, 程海. 定量重建气候历史的石笋年层方法[J]. 第四纪研究, 2002, 22(3): 14-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200203002.htmTan M, Hou J Z, Cheng H, et al. Methodology of quantitatively reconstructing paleoclimate from annualy laminated stalagmites[J]. Quaternary Sciences, 2002, 22(3): 14-24(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200203002.htm [29] 张会领, 余克服, 赵建新, 等. 中晚全新世湘西莲花洞石笋旋回沉积速率变化及其古气候意义[J]. 中国岩溶, 2017, 36(4): 580-590. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201704021.htmZhang H L, Yu K F, Zhao J X, et al. Variations in deposition rate of sedimentary cycle from a stalagmite in Lianhua Cave and its paleoclimatic implications during the mid-late Holocene[J]. Carsologica Sinica, 2017, 36(4): 580-590(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201704021.htm [30] Baker A, Proctor C, Lauritzen S E, et al. SPEP: High-resolution stalagmite records of NE Atlantic climate in the last millennium[J]. Pages, 2000, 8(2): 14. doi: 10.22498/pages.8.2.14 [31] Tan M, Liu T S, Hou J Z, et al. Cyclic rapid warming on centennial-scale revealed by a 2 650 year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003, 30(12): 1617-1620. [32] Tan L C, Yi L, Cai Y J, et al. Quantitative temperature reconstruction based on growth rate of annually-layered stalagmite: A case study from central China[J]. Quaternary Science Reviews, 2013, 72(2): 137-145. [33] Ruan J Y, Hu C Y. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China[J]. Chinese Science Bulletin, 2010, 55(34): 3929-3935. doi: 10.1007/s11434-010-4193-1 [34] Casteel R C, Banner J L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies[J]. Chemical Geology, 2015, 392: 43-58. doi: 10.1016/j.chemgeo.2014.11.002 [35] Railsback L, Bruce. A comparison of growth rate of late Holocene stalagmites with atmospheric precipitation and temperature, and its implications for paleoclimatology[J]. Quaternary Science Reviews, 2018, 187: 94-111. doi: 10.1016/j.quascirev.2018.03.002 [36] Rasbury M, Aharon P. ENSO-controlled rainfall variability records archived in tropical stalagmites from the mid-ocean island of Niue, South Pacific[J]. Geochemistry Geophysics Geosystems, 2013, 7(7): [SC]. [37] Polyak V J. Late Holocene climate and cultural changes in the Southwestern United States[J]. Science, 2001, 294(5540): 148-151. doi: 10.1126/science.1062771 [38] Kong X G, Wang Y J, Wu J Y, et al. A continuous 3 000 year precipitation record of ENSO variability during LGM from a stalagmite in Nanjing[J]. Chinese Science Bulletin, 2003, 48(5): 480-484. [39] Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element(Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records[J]. Chemical Geology, 2000, 166(3): 255-269. [40] Beynen P E, Soto L I, Polk J. Variable calcite deposition rates as proxy for paleo-precipitation determination as derived from speleothems in Central Florida, USA[J]. Journal of Cave and Karst Studies the National Speleological Society bulletin, 2008, 70(1): 25-34. [41] 刘浴辉, 胡超涌, 黄俊华, 等. 长江中游石笋年层厚度作为夏季风强度代用指标的研究[J]. 第四纪研究, 2005, 25(2): 228-234. doi: 10.3321/j.issn:1001-7410.2005.02.014Liu Y H, Hu C Y, Huang J H, et al. The research of the layer thickness of the stalagmite from the middle reaches of the Yangtze river taken as an proxy of the east Asian summer monsoon intensity[J]. Quaternary Sciences, 2005, 25(2): 228-234(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2005.02.014 [42] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 221-232. [43] 胡尊语, 覃荣蓓, 樊仁为, 等. 湖北清江和尚洞石笋色度对温度的响应. [J]. 第四纪研究, 2018, 38(6): 1487-1493.Hu Z Y, Qin R P, Fan R W, et al. The paleotemperature significance of color of annual laminae stalagmite from Heshang cave, Central China[J]. Quaternary Sciences, 2018, 38(6): 1487-1493(in Chinese with English abstract). [44] Zhu Z M, Feinberg J M, Xie S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences, 2017, 114(5): 852-857. doi: 10.1073/pnas.1610930114 [45] Wang C F, Bendle J A, Zhang H B, et al. Holocene temperature and hydrological changes reconstructed by bacterial 3-hydroxy fatty acids in a stalagmite from central China[J]. Quaternary Science Reviews, 2018, 192: 97-105. doi: 10.1016/j.quascirev.2018.05.030 [46] 刘浴辉, 孙霞, 郭彩青. 中国全新世4.2 ka BP气候事件及其对古文明的影响[J]. 地质科技情报, 2013, 32(1): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301020.htmLiu Y H, Sun X, Guo C Q, et al. Records of 4.2 ka BP Holocence event from China and its impact on ancient civilizations[J]. Geological Science and Technology Information, 2013, 32(1): 99-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301020.htm [47] Wang C F, Bendle J A, Greene S E, et al. Speleothem biomarker evidence for a negative terrestrial feedback on climate during Holocene warm periods[J]. Earth and Planetary Science Letters, 2019, 525: 115754. doi: 10.1016/j.epsl.2019.115754 [48] 胡超涌, 谢树成. 湖北清江和尚洞石笋古环境研究的回顾和展望[J]. 地质科技情报, 2012, 31(5): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205009.htmHu C Y, Xie S C. Paleo-environment reconstruction based on speleothems from Heshang Cave, Qingjiang Vally, Hubei Province: An overview[J]. Geological Science and Technology Information, 2012, 31(5): 57-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205009.htm [49] 万军伟, 沈继方. 清江半峡地区岩溶洞穴发育特征及其旅游资源[J]. 中国岩溶, 1997, 16(3): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR703.011.htmWan J W, Shen J F. The characteristics of karst cave development and tourism resources in Banxia area of the QingJiang River[J]. Carsologica Sinica, 1997, 16(3): 268-274(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR703.011.htm [50] 程海, 张海伟, 赵景耀, 等, 中国石笋古气候研究的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1565-1589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910005.htmCheng H, Zhang H W, Zhao J Y, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science in China: Earth Science, 2019, 49(10): 1565-1589(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910005.htm [51] Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: A reassessment[J]. Holocene, 2008, 18(6): 861-866. doi: 10.1177/0959683608095569 [52] Johnson K R, Hu C Y, Belshaw N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction[J]. Earth & Planetary Science Letters, 2006, 244(1/2): 394-407. [53] Cleveland W S. Robust locally weighted regression and smoothing scatterplots[J]. Publications of the American Statistical Association, 2012, 74: 829-836. [54] Mann M E, Lees J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445. doi: 10.1007/BF00142586 [55] Liu J, Chen J, Zhang X, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004 [56] 陈建徽, 饶志国, 刘建宝, 等. 全新世东亚夏季风最强盛期出现在何时?: 兼论中国南方石笋氧同位素的古气候意义[J]. 中国科学: 地球科学, 2016, 46(11): 1494-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201611008.htmChen J H, Rao Z G, Liu J B, et al. On the timing of the East Asian summer monsoon maximum during the Holocene-Does the speleothem oxygen isotope record reflect monsoon rainfall variability?[J]. Science in China: Earth Science, 2016, 46(11): 1494-1504(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201611008.htm [57] An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2(8): 619. [58] Loutre A B F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q [59] Huang X Y, Meyers P A, Jia C L, et al. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit[J]. Holocene, 2013, 23(8): 1123-1129. doi: 10.1177/0959683613483617 [60] Xie S C, Evershed R P, Huang X Y, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830. doi: 10.1130/G34318.1 [61] Wu L, Wen Z P, Huang R H, et al. Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western north pacific[J]. Monthly Weather Review, 2012, 140(1): 140-150. doi: 10.1175/MWR-D-11-00078.1 [62] Zhan R F, Wang Y Q, Lei X T. Contributions of ENSO and east indian ocean SSTA to the interannual variability of Northwest pacific tropical cyclone frequency[J]. Journal of Climate, 2011, 24(2): 509-521. doi: 10.1175/2010JCLI3808.1 [63] Zhou T J, Yu R C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D8): [SC]. [64] Goswami B N, Xavier P K. ENSO control on the south Asian monsoon through the length of the rainy season[J]. Geophysical Research Letters, 2005, 32(18): [SC]. [65] Wang L, Chen W, Huang R H. Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon[J]. John Wiley & Sons, Ltd, 2008, 35(20): [SC]. [66] 张会领, 余克服, 施祺, 等. 年际―年代际尺度上南海北部SST与东亚夏季风强度的负相关关系[J]. 热带地理, 2016, 36(1): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201601006.htmZhang H L, Yu K F, Shi Q, et al. The negative correlation between SST of the northern south China sea and the strength of EASM on inter-annual and inter-decadal time scale[J]. Tropical Geography, 2016, 36(1): 34-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201601006.htm [67] Wu J, Liu Q, Cui Q Y, et al. Shrinkage of east Asia winter monsoon associated with increased ENSO events since the mid-holocene[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(7): 3839-3848. doi: 10.1029/2018JD030148 [68] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420: 162-165. doi: 10.1038/nature01194 [69] Cobb K M, Westphal N, Sayani H R, et al. Highly variable El Niño-Southern Oscillation Throughout the Holocene[J]. Science, 2013, 339(6115): 67-70. doi: 10.1126/science.1228246 [70] Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ18O climate record of the past 16 500 years and the role of the Sun, ocean, and volcanoes[J]. Quaternary Research, 1995, 44(3): 341-354. doi: 10.1006/qres.1995.1079 [71] Cheng H, Sinha A, Verheyden S, et al. The climate variability in northern Levant over the past 20 000 years[J]. Geophysical Research Letters, 2016, 42: 8641-8650. [72] Xu D K, Lu H Y, Chu G Q, et al. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record[J]. Scientific Reports, 2014, 4(1): 3611.