留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泥岩与页岩特征辨析

蔡毅 朱如凯 吴松涛 刘畅

蔡毅, 朱如凯, 吴松涛, 刘畅. 泥岩与页岩特征辨析[J]. 地质科技通报, 2022, 41(3): 96-107. doi: 10.19509/j.cnki.dzkq.2022.0084
引用本文: 蔡毅, 朱如凯, 吴松涛, 刘畅. 泥岩与页岩特征辨析[J]. 地质科技通报, 2022, 41(3): 96-107. doi: 10.19509/j.cnki.dzkq.2022.0084
Cai Yi, Zhu Rukai, Wu Songtao, Liu Chang. Discussion on characteristics of mudstone and shale[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 96-107. doi: 10.19509/j.cnki.dzkq.2022.0084
Citation: Cai Yi, Zhu Rukai, Wu Songtao, Liu Chang. Discussion on characteristics of mudstone and shale[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 96-107. doi: 10.19509/j.cnki.dzkq.2022.0084

泥岩与页岩特征辨析

doi: 10.19509/j.cnki.dzkq.2022.0084
基金项目: 

国家自然科学基金重大项目“陆相页岩油富集主控因素与有利区带评价方法” 42090025

中国石油天然气股份有限公司科学研究与技术开发项目“中国陆相页岩油成藏机理、分布规律与资源潜力研究” 2019E-2601

详细信息
    作者简介:

    蔡毅(1990—),男,现正攻读石油勘探开发专业博士学位,主要从事沉积储层研究。E-mail: caiyi813@petrochina.com.cn

    通讯作者:

    朱如凯(1968—),男,教授级高级工程师,主要从事沉积储层与非常规油气地质研究。E-mail: zrk@petrochina.com.cn

  • 中图分类号: P588.22

Discussion on characteristics of mudstone and shale

  • 摘要:

    细粒沉积岩类型复杂,原因是其定义基于结构粒度概念,缺乏对矿物成分的有效约束,加之,不同学者是在不同尺度下对构造现象进行描述,使得细粒沉积岩缺乏较为科学、系统的分类。为辨析泥岩与页岩的特征,通过大量调研国内外沉积学教材及相关文献发现:细粒沉积物(粒径小于62.5 μm)的概念自20世纪30年代进入人们的视野,后被广大研究人员广泛接受,且大多数学者普遍认为可依据粒度大小,进一步将细粒沉积物划分为黏土级颗粒(粒径小于3.9 μm)和粉砂级颗粒(粒径介于3.9~62.5 μm之间)。但是,国、内外沉积学界对细粒沉积物“泥”(泥级颗粒)的粒径划分不同,欧美学者一般将“泥”界定为粒径小于62.5 μm,包括黏土级颗粒与粉砂级颗粒。在我国,自20世纪50年代开始,沿用了前苏联的方案,“泥”的粒径对应黏土级颗粒即小于3.9 μm,这一分歧是导致泥岩与页岩等概念使用混乱的根本原因。概而言之,固结的泥岩具有与页岩相同的粒级结构和组分,但是不具备页岩的“纹层”或“页理”构造特征;辩证而言,“纹层”强调沉积过程所形成的垂向层理差异,而“页理”则是成岩过程受风化作用影响形成的力学薄弱面。从泥岩和页岩的矿物组成看,存在石英和长石硅质矿物、黏土矿物,碳酸盐矿物的混合沉积作用的影响,需要从沉积成因出发,结合构造特征,综合矿物类型、有机质丰度和颗粒来源等因素对泥岩和页岩进行岩性岩相分类。实践表明,页岩油气的开发动用需要地质工程一体化协同,辨析泥岩和页岩的特征差异性对产层优选具有重要意义。

     

  • 图 1  细粒沉积物粒级划分及泥级颗粒界限差异对比图(据文献[13-16]编绘)

    Figure 1.  Contrast diagram of grain size division of fine sediment and difference of mud grain size boundary

    图 2  层理与纹层厚度划分(据文献[17, 22]编绘)

    Figure 2.  Thickness classification of bedding and lamination

    图 3  古龙凹陷纹层类型划分及组合

    a.长英质粉砂纹层,不连续,曲线状,不平行,GY2HC井,2 280.35 m;b.介形虫纹层,连续,波状,平行,GY2HC井,2 373.4 m;c.黄铁矿纹层,连续,板状,平行,GY2HC井,2 299.3 m;d.长英质粉砂-黏土纹层组合, GY2HC井, w(TOC)=2.55%;e.薄介形虫-厚长英质粉砂-薄黏土纹层组合, GY2HC井, w(TOC)=1.19%

    Figure 3.  Classification and assemblage of lamination types in Gulong Sag

    图 4  古龙凹陷页理类型划分

    a, b.页理面含炭屑,GY3HC井, 2 383.1 m(俯、正视图);c, d.页理面含黄铁矿交代生物体,GY3HC井, 2 382.4 m(俯、正视图);e, f.页理面含介形虫,GY3HC井, 2 383.6 m(俯、正视图);g, h.页理面含叶肢介,GY3HC井, 2 399.5 m(俯、正视图)

    Figure 4.  Classification of fissile types in Gulong Sag

    图 5  陆源碎屑颗粒-盆内生物钙质异化颗粒-盆内生物硅质异化颗粒三端元分类法(据文献[57]编绘) c

    Figure 5.  Three terminal taxonomies of terrigenous and volcanic grains-calcareous allochems-biosiliceous allochems

    图 6  北美主要的“页岩”勘探区带矿物成分变化(据文献[63]编绘)

    彩色点表示所标层系的区域平均成分值;淡蓝色覆盖区显示巴奈特“页岩”中的特定区域值的范围;淡紫色被定义为与伊格尔福特页岩相似的区域组分数据;淡橘色被定义为与普罗霍恩页岩相似的区域组分数据;黑色虚线定义了阿巴拉契亚盆地马塞勒斯“页岩”的区域组成数据范围

    Figure 6.  Mineral composition changes in major "shale" exploration zones in North America

    表  1  细粒沉积分类使用术语表(据文献[17]修改)

    Table  1.   Terms applied for classification of fine-grained sedimentation

    基本术语
    未固结 固结,无页理 固结,页理/纹层 比例和粒度大小
    粉砂 粉砂岩 粉砂质页岩 超过2/3的粉砂级颗粒(3.9~62.5 μm)
    泥岩 页岩 粉砂级与黏土级颗粒的混合
    黏土 黏土岩 黏土质页岩 超过2/3的黏土级颗粒(小于3.9 μm)
    结构性
    描述
    含粉砂的 10%的粉砂级颗粒
    含泥的 10%的粉砂级或黏土级颗粒(应用于非泥岩)
    含黏土的 大于10%的黏土级颗粒
    含砂或含砾石的 大于10%的砂级或砾级颗粒
    组分性
    描述
    钙质的 大于10%的碳酸钙(有孔虫目的,微型浮游生物化石等) 含黄铁矿,铁质的云母质的磷酸盐等代表性的1%~5%
    硅质的 大于10%的二氧化硅(硅藻,放射虫类等)
    碳质的 大于1%的有机碳
    下载: 导出CSV

    表  2  国、内外不同学者对泥岩与页岩定义发展变化对比表

    Table  2.   Comparative table of development of shale and mudstone definitions from different scholars among home and a broad

    定义强调 主要内容 代表学者 所属体系
    页岩 泥岩
    页岩术语作为总称 页岩是细粒沉积岩的统称,其颗粒的直径小于62.5 μm,是一个广义的术语,包括了粉砂岩 / Clark[33]
    Potter等[17]
    欧美国家学者
    泥岩与页岩的构造差异 页岩是一种有纹层的或易于裂开的岩石,限用于被埋藏的或古代的沉积物,对于那些既不易裂开而又不具纹理的黏土岩,由于是团块状或块状的,就可以应用泥岩这一名称。大多数学者倾向于将泥岩限用于那些粒级和成分都属于页岩但却缺乏纹(层)理及(或)裂开性的岩石 Pettijohn[25],Tucker[34], O'brien等[22]
    介于黏土岩和粉砂岩的中间过渡类型 黏土矿物体积分数大于2/3的岩石称为黏土岩,粉砂体积分数大于2/3的岩石称为粉砂岩,两者之间过渡类型称为泥岩和页岩。所有这些岩石总称为泥质岩(argillaceous rocks)或泥状岩(mudrock) Blat等[23]
    限定特指页岩作为野外定名 页岩仅仅指细粒的、固结的、页状的野外沉积岩 泥岩是细粒沉积岩的通用术语,类似于砂岩、粉砂岩、灰岩、白云岩 Stow[24]
    Bohacs等[35]
    泥质结构(< 0.01mm的颗粒占比90%) 黏土岩主要由粒径小于0.01mm的颗粒组成,并且一般含有30%以上大小为0.001mm的颗粒。泥质结构几乎全由(90%以上) < 0.01mm的颗粒组成 鲁欣[36] 前苏联学者
    页岩的粒度细于泥岩,但属于黏土级 页岩是成分中粒径小于0.0001mm的矿物颗粒占50%以上的黏土岩,即较细部分的黏土岩 泥岩是成分中大小为0.01-0.0001m的矿物颗粒占50%以上的黏土岩,即较粗部分的黏土岩,进一步可分为粗粒泥岩和细粒泥岩 阿弗杜辛[37]
    固结压实,黏土级矿物体积分数超过67% 一种页状的、固结的、易裂开的岩石,黏土级矿物体积分数超过67% 泥质沉积物经压实和胶结作用形成的细粒沉积岩 American Geological Institutess[38] 辞典词条
    成分复杂,可按混入物质分类 一种成分复杂、具有薄页状或薄片状层理的黏土岩,是弱固结的黏土经较强的压固作用、脱水作用、重结晶作用后形成的。成分除黏土矿物外,尚混人有石英、长石等碎屑矿物及其他化学物质 一种成分较复杂、层理不明显的块状黏土岩,是弱固结的黏土经压固作用、脱水作用、微弱的重结晶作用形成的。可按混入物质不同分为炭质泥岩、铁质泥岩、砂质泥岩 《地球科学大辞典》编辑委员会[39]
    成岩固结作用和结构构造差异 具有页理或层间劈理的一种泥质岩。由黏土矿物和粉砂组分超过90%的泥质沉积物经较强或较长时间的成岩压实作用而成。约占沉积岩总量的40%~60%。泥状结构,片状构造,矿物定向排列明显。可按黏土矿物成分、粉砂/黏土值、颜色和成因进一步分类 粉砂和黏土总量超过90%的一种碎屑沉积岩,包括粉砂岩、黏土岩及二者之间的过渡类型。未固结者称为泥。具泥状结构或粉砂泥状结构,块状构造。可按黏土矿物成分、粉砂/黏土值、颜色和成因进一步分类 孙鸿烈等[40] 辞典词条
    页岩和泥岩由黏土固结成岩,黏土粒径 < 3.9 μm 泥质岩(黏土岩)主要由黏土矿物及小于3.9 μm的细碎屑(>50%)组成,含少量粉砂碎屑。黏土经成岩、后生作用固结而成的岩石就是泥岩和页岩,含有一定量的粉砂,泥岩无页理,页岩具页理。页岩、泥岩中粉砂质量分数 < 5%,含粉砂页岩、泥岩中粉砂体积分数5%-25%,粉砂质页岩、泥岩中粉砂体积分数25%-50% 何起祥[41],曾允孚等[42],方邺森等[43] 我国学者
    页岩和泥岩由黏土固结成岩,黏土粒径 < 62.5 μm 黏土岩(泥质岩)(argillaceous rocks)主要是由 < 62.5 μm的颗粒组成的、并含大量黏土矿物的疏松状或固结的岩石。绝大多数的黏土质岩石(泥岩和页岩)的主要组分(黏土矿物和粉砂)是以碎屑状态被搬运至沉积场所以机械方式沉积而成的。泥岩层理、劈理不显著(块状),页岩层理、劈理显著(具页理) 刘宝珺[44]
    构造差异,以及页理和纹理的成因 具有页理构造的黏土岩称为页岩。页理是岩石沿平行层理方向易于裂开成薄片的性质,页理的形成主要是在一定压力作用下,由于水云母、绢云母、绿泥石等片状矿物平行排列所致。纹理的厚度范围0.05~1mm,大多数为0.1~0.4mm,纹理通常有3种显示:粗粒和细粒颗粒的交替,如粉砂和黏土;浅色层和深色层的交替,以有机质含量来区分:碳酸钙和黏土粉砂的交替 何镜宇等[45-46]
    黏土矿物体积分数>50% 凡黏土矿物体积分数大于50%、包括多种形成机理,但通常以陆源碎屑沉积为主的细粒岩石称为黏土岩。黏土经成岩作用形成固结的泥岩和页岩,总称为黏土岩,泥岩是无纹理、无页理的块状黏土岩,页岩是有页理或纹理的薄层状黏土岩 张鹏飞等[47]
    泥岩的两种含义 黏土岩(claystone)系指以黏土矿物为主(体积分数>50%)的沉积岩。在成岩后后生作用中因重结晶可使部分或大部分颗朱粒超过原来黏土颗粒大小,则谓之泥岩、页岩或泥板岩。泥岩(mudstone)有两种含义,一是黏土岩的同义术语,一是指页理不发育的黏土岩。页岩(shale)系指页理发育的黏土岩 冯增昭等[48],赵澄林[49],筱敏[50]
    下载: 导出CSV

    表  3  纹层与页理辩证关系

    Table  3.   Dialectical relationship between lamination and fissile

    纹层 页理
    厚度 薄于1 cm(通常0.05~1 mm厚) 薄于1 cm
    机理 原生沉积作用 成岩风化作用
    特征 可识别的最薄地层单元(细层) 只在地表露头出现,薄饼板或薄片状(力学薄弱面)
    内涵 形成页理的基础 描述在风化作用中薄纹层裂成薄片状的过程
    下载: 导出CSV
  • [1] 赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006003.htm

    Zhao W Z, Zhu R K, Hu S Y, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006003.htm
    [2] 王宏语, 杨润泽, 张峰, 等. 富含有机质泥页岩岩相表征的研究现状与趋势[J]. 地质科技情报, 2018, 37(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802020.htm

    Wang H Y, Yang R Z, Zhang F, et al. Research progress and trend of organic-rich shalelithofacies characterization[J]. Geological Science and Technology Information, 2018, 37(2): 141-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802020.htm
    [3] 张福, 黄艺, 蓝宝锋, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101005.htm

    Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101005.htm
    [4] Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the Barnett shale in East-Central Fort Worth Basin, TexasGeohorizon[J]. AAPG Bulletin, 2012, 96(1): 1-22. doi: 10.1306/04261110116
    [5] Loucks R G, Ruppel S C. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. doi: 10.1306/11020606059
    [6] 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htm

    Zhu R K, Zou C N, Wu S T, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htm
    [7] 杨智, 邹才能. "进源找油": 源岩油气内涵与前景[J]. 石油勘探与开发, 2019, 46(1): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm

    Yang Z, Zou C N. "Exploring petroleum inside source kitchen": Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm
    [8] 邹才能, 杨智, 王红岩, 等. "进源找油": 论四川盆地非常规陆相大型页岩油气田[J]. 地质学报, 2019, 93(7): 1551-1562. doi: 10.3969/j.issn.0001-5717.2019.07.001

    Zou C N, Yang Z, Wang H Y, et al. "Exploring petroleum inside source kitchen": Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(7): 1551-1562(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.07.001
    [9] 杨智, 唐振兴, 陈旋, 等. "进源找油": 致密油主要类型及地质工程一体化进展[J]. 中国石油勘探, 2020, 25(2): 73-83. doi: 10.3969/j.issn.1672-7703.2020.02.008

    Yang Z, Tang Z X, Chen X, et al. "Exploring oil inside source kitchen": Main types of tight oil and progress of geology-engineering integration[J]. China Petroleum Exploration, 2020, 25(2): 73-83(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.02.008
    [10] 周立宏, 蒲秀刚, 邓远, 等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏, 2016, 28(1): 6-15. doi: 10.3969/j.issn.1673-8926.2016.01.002

    Zhou L H, Pu X G, Deng Y, et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28(1): 6-15(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2016.01.002
    [11] Krumbein W C. The dispersion of fine-grained sediments for mechanical analysis[J]. Journal of Sedimentary Research, 1933, 3(3): 121-135. doi: 10.2110/jsr.3.121
    [12] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems shale heterogenity and petrophysical properties[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. doi: 10.1306/03281110162
    [13] 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm

    Jiang Z X, Liang C, Wu J, et al. Several issues insedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm
    [14] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980.
    [15] Folk R L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature[J]. The Journal of Geology, 1954, 62(4): 344-359. doi: 10.1086/626171
    [16] 全国文献工作标准化技术委员会. 岩石分类和命名方案碎屑粒级划分: GB-T17412.2-1998[S]. 北京: 中国标准出版社, 1998.

    National Documentation Standardization Technical Committee. Rock classification and naming scheme-clast size classification: GB-T17412.2-1998[S]. Beijing: China Standard Press, 1998(in Chinese).
    [17] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. Springer Science & Business Media, 2005.
    [18] Hooson W. The miners discovery[M]. Likley: Scolar Press for the Insitution of Mining and Metallury, 1747.
    [19] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale: Study guide and reference source[M]. Berlin: Springer Science & Business Media, 1980.
    [20] Ingram R L. Fissility of mudrocks[J]. GSA Bulletin, 1953, 64(8): 869-878. doi: 10.1130/0016-7606(1953)64[869:FOM]2.0.CO;2
    [21] Dunbar C O, Rodgers J. Principles of stratigraphy[M]. New York: John Wiley & Co., 1957.
    [22] Stow D A V. Sedimentary rocks in the field: A color guide[M]. [S. l. ]: Gulf Professional Publishing, 2005.
    [23] Blatt H, Middleton G V, Murray R C. Origin of sedimentary rocks[M]. Englewood Cliffs, N.J. : Prentice-Hall, Inc., 1972.
    [24] O'brien N R, Slatt R M. Argillaceous rock atlas[M]. Berlin: Springer Science & Business Media, 2012.
    [25] Pettijohn F J. Sedimentary rocks[M]. [S. l. ]: Pet Harper & Row, Publishers, Inc., 1975.
    [26] 蒋恕, 唐相路, Osborne Steve, 等. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例[J]. 地球科学, 2017, 42(7): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707004.htm

    Jiang S, Tang X L, Steve O, et al. Enrichment factors and current misunderstanding of shale oil and gas: Case study of shales in U.S., Argentina and China[J]. Earth Science, 2017, 42(7): 1083-1091(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707004.htm
    [27] 布拉特·米德顿·穆雷. 沉积岩成因[M]. 北京: 科学出版社, 1986.

    Blatt M M. Origin of sedimentary rocks[M]. Beijing: China Science Publishing & Media LTD(CSPM), 1986(in Chinese).
    [28] 于炳松, 梅冥相. 沉积岩石学[M]. 北京: 地质出版社, 2016.

    Yu B S, Mei M X. Sedimentary petrology[M]. Beijing: Geological Publishing House, 2016(in Chinese).
    [29] 中国地质大学地学数字博物馆. 泥页岩[EB/OL]. (2012-08-02)http://digitalmuseum.zju.edu.cn.

    Digital Museum of Geosciences, China University of Geosciences. Mud Shale[EB/OL]. (2012-08-02)[2021-05-15]. http://digitalmuseum.zju.edu.cn.
    [30] 吴河勇, 林铁锋, 白云风, 等. 松辽盆地北部泥(页)岩油勘探潜力分析[J]. 大庆石油地质与开发, 2019, 38(5): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201905011.htm

    Wu H Y, Lin T F, Bai Y F, et al. Analyses of the mudstone(shale) oil exploration potential in North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 78-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201905011.htm
    [31] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
    [32] Lundegard P D, Samuels N D. Field classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1980, 50(3): 781-786.
    [33] Clark T H. Shale: A study in nomenclature[M]. Ottawa: Trans Royal Soc. Canada, 1954.
    [34] Tucker M E. Sedimentary petrology: An introduction to the origin of sedimentary rocks[M]. New York: John Wiley & Sons, 2001.
    [35] Bohacs K M, Passey Q R, Rudnicki M, et al. The spectrum of fine-grained reservoirs[EB/OL]. (2013-03-26)[2021-05-15]. https://onepetro.org/IPTCONF/proceedings/12IPTC/All-12IPTC/IPTC-16676-MS/154379.
    [36] 鲁欣. 沉积学原理[M]. 杨士儒, 赵经中, 李颐, 等译. 北京: 地质出版社, 1955.

    Lu X. Principles of sedimentology[M]. Yang S R, Zhao J Z, Li Y, et al. Beijing: Geological Publishing House, 1955(in Chinese).
    [37] 阿弗杜辛П П. 黏土沉积岩[M]. 周鸿生, 译. 北京: 地质出版社, 1956.

    Avdusin П П. Clay sedimentary rocks[M]. Zhou H S. Beijing: Geological Publishing House, 1956(in Chinese).
    [38] American Geological Institute. Glossary of geology[M]. [S. l. ]: Springer Science & Business Media, 2005.
    [39] 《地球科学大辞典》编辑委员会. 地球科学大辞典[M]. 北京: 地质出版社, 2006.

    《Dictionary of Earth Sciences》 Editorial Committee. Dictionary of earth sciences[M]. Beijing: Geological Publishing House, 2006(in Chinese).
    [40] 孙鸿烈, 吴国雄, 郑度. 地学大辞典[M]. 北京: 科学出版社, 2017.

    Sun H L, Wu G X, Zheng D. Dictionary of earth sciences[M]. Beijing: China Science Publishing & Media LTD(CSPM), 2017(in Chinese).
    [41] 何起祥. 沉积岩和沉积矿床[M]. 北京: 地质出版社, 1978.

    He Q X. Sedimentary rocks and deposits[M]. Beijing: Geological Publishing House, 1978(in Chinese).
    [42] 曾允孚, 夏文杰. 沉积岩石学[M]. 北京: 地质出版社, 1984.

    Zeng Y F, Xia W J. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1984(in Chinese).
    [43] 方邺森, 任磊夫. 沉积岩石学教程[M]. 北京: 地质出版社, 1987.

    Fang Y S, Ren L F. A course in sedimentary petrology[M]. Beijing: Geological Publishing House, 1987(in Chinese).
    [44] 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980.

    Liu B J. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980(in Chinese).
    [45] 何镜宇, 余素玉. 沉积岩石学[M]. 武汉: 中国地质大学出版社, 1986.

    He J Y, Yu S Y. Sedimentary petrology[M]. Wuhan: China University of Geosciences Press, 1986(in Chinese).
    [46] 何镜宇, 孟祥化. 沉积岩和沉积相模式及建造[M]. 北京: 地质出版社, 1987.

    He J Y, Meng X H. Sedimentary rocks and sedimentary facies model and construction[M]. Beijing: Geological Publishing House, 1987(in Chinese).
    [47] 张鹏飞. 沉积岩石学[M]. 北京: 煤炭工业出版社, 1990.

    Zhang P F. Sedimentary petrology[M]. Beijing: China Coal Industry Press, 1990(in Chinese).
    [48] 冯增昭, 王英华, 刘焕杰. 中国沉积学[M]. 北京: 石油工业出版社, 1994.

    Feng Z Z, Wang Y H, Liu H J. Sedimentology of China[M]. Beijing: Petroleum Industry Press, 1994(in Chinese).
    [49] 赵澄林. 沉积岩石学[M]. 北京: 石油工业出版社, 2000.

    Zhao C L. Sedimentary petrology[M]. Beijing: Petroleum Industry Press, 2000(in Chinese).
    [50] 朱筱敏. 沉积岩石学[M]. 北京: 石油工业出版社, 2008.

    Zhu X M. Sedimentary petrology[M]. Beijing: Petroleum Industry Press, 2008(in Chinese).
    [51] Mckee E D, Weir G W. Terminology for stratification and cross-stratification in sedimentary rocks[J]. GSA Bulletin, 1953, 64(4): 381-390. doi: 10.1130/0016-7606(1953)64[381:TFSACI]2.0.CO;2
    [52] Schieber J, Zimmerle W, Sethi P S, et al. Shales and mudstones, Vol. 1: Basin studies, sedimentology, and palentology[M]. Stuttgart: E. Schweizerbart'sche, 1998.
    [53] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246. doi: 10.2110/jsr.2015.11
    [54] 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm

    Jiang Z X, Zhang W Z, Liang C, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
    [55] 葸克来, 操应长, 朱如凯, 等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报, 2015, 36(12): 1495-1507. doi: 10.7623/syxb201512004

    Xi K L, Cao Y C, Zhu R K, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507(in Chinese with English abstract). doi: 10.7623/syxb201512004
    [56] 王勇, 宋国奇, 刘惠民, 等. 济阳坳陷细粒沉积岩形成环境及沉积构造[J]. 东北石油大学学报, 2015, 39(3): 7-14. doi: 10.3969/j.issn.2095-4107.2015.03.002

    Wang Y, Song G Q, Liu H M, et al. Formation environment and sedimentary structures of fine-grained sedimentary rock in Jiyang depression[J]. Journal of Northeast Petroleum University, 2015, 39(3): 7-14(in Chinese with English abstract). doi: 10.3969/j.issn.2095-4107.2015.03.002
    [57] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199. doi: 10.2110/jsr.2014.92
    [58] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435. doi: 10.1130/0091-7613(1984)12<432:MOSACS>2.0.CO;2
    [59] 李婷婷, 朱如凯, 白斌, 等. 混积岩储层特征: 以酒泉盆地青西凹陷下白垩统混积岩为例[J]. 沉积学报, 2015, 33(2): 376-384. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201502017.htm

    Li T T, Zhu R K, Bai B, et al. Characteristics of mixed sedimentary reservoir: Taking the Lower Cretaceous mixed sedimentary rock of Qingxi Depression in Jiuquan Basin as an example[J]. Acta Sedimentologica Sinica, 2015, 33(2): 376-384(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201502017.htm
    [60] 陈世悦, 张顺, 王永诗, 等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发, 2016, 43(2): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602006.htm

    Chen S Y, Zhang S, Wang Y S, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602006.htm
    [61] 郝运轻, 谢忠怀, 周自立, 等. 非常规油气勘探领域泥页岩综合分类命名方案探讨[J]. 油气地质与采收率, 2012, 19(6): 16-19, 24, 112. doi: 10.3969/j.issn.1009-9603.2012.06.004

    Hao Y Q, Xie Z H, Zhou Z L, et al. Discussion on multi-factors identification of mudstone and shale[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 16-19, 24, 112(in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2012.06.004
    [62] 朱如凯, 邹才能, 袁选俊, 等. 中国能源沉积学研究进展与发展战略思考[J]. 沉积学报, 2017, 35(5): 1004-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705012.htm

    Zhu R K, Zou C N, Yuan X J, et al. Research progress and development strategic thinking on energy sedimentology[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1004-1015(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705012.htm
    [63] Ulmer-Scholle D S, Scholle P A, Schieber J, et al. A color guide to the petrography of sandstones, siltstones, shales and associated rocks[M]. Tulsa: American Association of Petroleum Geologists, 2014.
    [64] 李萧, 吴礼明, 王丙贤, 等. 渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测[J]. 地质科技通报, 2021, 40(6): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106004.htm

    Li X, Wu L M, Wang B X, et al. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation, southeastern Chongqing[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 24-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106004.htm
    [65] 解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103008.htm

    Xie J Y, Lu H Z, Chen L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103008.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2399
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08

目录

    /

    返回文章
    返回