A fine study on low-rising structure of Panyu YZ gas field group in Pearl River Mouth Basin
-
摘要:
珠江口盆地YZ气田群位于陆架边缘区域,气藏埋深大于3 000 m,构造研究面临水深变化大、表层低速泥岩厚度变化大、小范围浅层气等多种因素影响的问题,气藏顶界深度精细预测难度大,给气田开发方案实施带来风险。针对该问题提出一种处理解释一体化的研究思路: 首先,沿目的层及其上部地震反射标志层横向加密拾取地震速度谱,提高速度分析的精度;其次,利用已钻井合成地震记录标定后的速度对地震速度进行宏观校正,消除井震速度系统误差,应用校正后的速度进行时深转换,得到初始深度构造;通过相关性分析法明确井点处剩余误差的主要来源,以相关性趋势面为约束,结合井点剩余误差编辑误差网格以校正初始深度构造。最后,通过校正井点残差得到较高精度的深度构造。气田开发的实践表明,该方法预测的构造深度和开发井实钻深度的误差由原来的10~40 m降至10 m以内,成功提高了目标区构造预测精度,有效指导了该区开发井的设计和实施,降低了气田开发的风险。因此,对于类似地质条件下油气田,其构造精细研究不单是唯数据驱动的速度分析及偏移成像,认清构造影响因素并予以消除也是关键。
Abstract:YZ gas field group in the Pearl River Mouth Basin is located at the edge of the continental shelf, and the gas reservoir is buried deeper than 3 000 m. Structural research faces multiple problems, such as large changes in water depth, large changes in the thickness of the surface low-velocity mudstone, and small-scale shallow gas. It is difficult to predict the depth of gas reservoirs precisely, which brings risks to the implementation of the overall development plan in the gas fields. Aiming at this problem, a research idea of integration of processing and interpretation is proposed: firstly, dense velocity analysis is carried out along the target layer and its upper seismic reflection layer to improve the accuracy of seismic velocity analysis; secondly, in order to eliminate the systematic error of well-seismic velocity, the macro correction of seismic velocity is carried out by using the calibrated velocity of synthetic seismic records, and the corrected velocity is used to perform time-depth conversion to obtain the initial depth structure; the main source of the residual error at the well point is clarified by the correlation analysis method, and with the correlation trend surface as the constraint, the error grid is edited in combination with the residual error of the well to correct the initial depth structure. Finally, a higher-precision depth structure is obtained by correcting the small error at the well location. The practice of gas field exploitation shows that the error between the structural depth predicted by this method and the actual depth of development wells has been reduced from 10-40 m to less than 10 m, which has successfully improved the accuracy of structural prediction, effectively guided the design and implementation of development wells, and reduced the risk of gas field exploitation. For oil and gas fields under similar geological conditions, the detailed study of the structure is not only based on data-driven velocity analysis and seismic imaging, identifying and eliminating the influencing factors of the structure is also the key.
-
表 1 ZJ1顶界时深转换后构造误差对比
Table 1. Comparison of structural errors aftertime-depth conversion of ZJ1
井名 YZ-A-1 YZ-A-2 YZ-A-3 YZ-B-1 YZ-B-2 YZ-B-3 YZ-B-4 YZ-C-1 YZ-C-2 YZ-C-3 YZ-C-4 YZ-C-5 YZ-C-6 均方根 单井VSP时深关系
拟合较深误差/m-191.71 -216.87 -140.94 -220.45 -236.62 -219.07 -43.41 2.80 43.02 30.86 28.41 45.41 72.74 100.42 常规地震速度宏观
校正转深误差/m-47.61 -70.20 10.50 -76.52 -69.38 -54.56 -45.47 68.90 45.14 74.87 72.29 34.05 67.36 59.69 表 2 ZJ1顶界时深转换后构造及剩余误差校正后构造误差对比
Table 2. Structure error comparison between time-depth conversion and residual error correction of ZJ1
井名 单井VSP时深转换后误差/m 常规地震速度校正后的误差/m 沿层密点速度校正后误差/m 剩余误差校正后误差(残差)/m YZ-A-1 -191.41 -47.61 -35.17 -1.06 YZ-A-2 -216.87 -70.20 -58.88 -4.08 YZ-A-3 -140.91 10.05 6.02 3.02 YZ-B-1 -220.45 -76.52 -55.63 -5.63 YZ-B-2 -236.62 -69.38 -51.66 4.00 YZ-B-3 -219.07 -54.56 -43.23 3.30 YZ-B-4 -43.41 -45.47 -38.46 -0.06 YZ-C-1 2.80 68.90 57.51 9.20 YZ-C-2 -43.02 45.14 31.30 0.20 YZ-C-3 -30.86 74.87 64.75 5.75 YZ-C-4 28.41 72.29 58.84 -1.16 YZ-C-5 45.41 34.05 32.24 -9.76 YZ-C-6 -72.74 67.36 49.08 11.08 均方根 100.42 59.69 47.41 5.69 -
[1] 何敏, 朱明, 汪瑞良, 等. 白云深水崎岖海底区时深转换方法探讨[J]. 地球物理学进展, 2007, 22(3): 966-971. doi: 10.3969/j.issn.1004-2903.2007.03.046He M, Zhu M, Wang R L, et al. The discussion of time-depth conversion methods in the baiyundeepwater rough seafloor area[J]. Progress in Geophysics, 2007, 22(3): 966-971 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2007.03.046 [2] 刘杰, 秦成岗, 全志臻, 等. 一种识别陆架坡折带"隐形构造"的时深转换方法[J]. 石油地球物理勘探, 2013, 48(1): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201301020.htmLiu J, Qin C G, Quan Z Z, et al. A time-depth conversion method for hidden structure identification in shelf-break belts[J]. Oil Geophysical Prospecting, 2013, 48(1): 128-133 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201301020.htm [3] 谢玉洪. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景[J]. 地质科技通报, 2020, 39(5): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005010.htmXie Y H. Sedimentary characteristics and hydrocarbom exploration potential of the upstream of the Central Canyon in the Yinggehai and Qiongdongnan Basins[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 69-78 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005010.htm [4] 熊鹏飞, 姜涛, 匡增桂, 等. 琼东南盆地南部梅山组丘状体沉积特征及成因机制[J]. 地质科技通报, 2021, 40(4): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104002.htmXiong P F, Jiang T, Kuang Z G, et al. Sedimentary characteristics and origin of moundes in Meishan Formation, southern Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 11-21 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104002.htm [5] 张磊岗, 屈红军, 陈硕, 等. 浅海砂质碎屑流沉积特征与模式: 以莺歌海盆地东方气田莺二段为例[J]. 地质科技通报, 2021, 40(6): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106016.htmZhang L G, Qu H J, Chen S, et al. Sedimentary characteristics and model of shallow sea sandy debrisflow: A case study of Ying Ⅱ Member in the Dongfang 1-1 Gas Field, Yinggehai Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 140-150 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106016.htm [6] 凌云, 郭建明, 郭向宇, 等. 油藏描述中的井震时深转换技术研究[J]. 石油物探, 2011, 50(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201101003.htmLing Y, Guo J M, Guo X Y, et al. Research on time-depth conversion by well-to-seismic in reservoir characterization[J]. Petroleum Geophysical Prospecting, 2011, 50(1): 1-13 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201101003.htm [7] 杨军, 王永刚, 杨彦敏, 等. 阿尔及利亚416a-417区块构造精细成图方法[J]. 石油物探, 2007, 46(3): 294-301. doi: 10.3969/j.issn.1000-1441.2007.03.012Yang J, Wang Y G, Yang Y M, et al. Fine mapping of geological structure in 416a-417 area of Algeria[J]. Petroleum Geophysical Prospecting, 2007, 46(3): 294-301 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2007.03.012 [8] 刘建芳, 季红军, 杨彦敏, 等. 相关分析构造图误差校正方法应用及效果[J]. 勘探地球物理进展, 2008, 31(2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200802012.htmLiu J F, Ji H J, Yang Y M, et al. Correlation analysis structure diagram error correction method and effect[J]. Advances in Exploration Geophysics, 2008, 31(2): 143-147 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200802012.htm [9] 范芬, 刘爱群, 任科英, 等. 乐东-陵水坡折带速度分析及时深转换方法[J]. 物探与化探, 2016, 40(6): 1185-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201606020.htmFan F, Liu A Q, Ren K Y, et al. Velocity analysis and time-depth conversion study of Ledong-Lingshui slope-break belt[J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1185-1190 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201606020.htm [10] 秦成岗, 施和生, 张忠涛, 等. 珠江口盆地番禺低隆起-白云凹陷北坡SQ 21.0层序陆架坡折带沉积特征及油气勘探潜力[J]. 中国海上油气, 2011, 23(1): 14-18. doi: 10.3969/j.issn.1673-1506.2011.01.003Qin C G, Shi H S, Zhang Z T, et al. Sedimentary characteristics and hydrocarbon exploration potential along the SQ21.0 sequence shelf-break zone on Panyu low-uplift and the north slope of Baiyun sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(1): 14-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2011.01.003 [11] 李达, 李茂, 陶倩倩, 等. 提高南海西部文昌X油田低幅构造成图精度的举措[J]. 地质科技情报, 2017, 36(3): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703010.htmLi D, Li M, Tao Q Q, et al. Measures to improve the accuracy of low-amplitude structural mapping of Wenchang X Oilfield in the western South China Sea[J]. Geological Science and Technology Information, 2017, 36(3): 70-76 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703010.htm [12] 张英德, 彭佳勇, 郝立业, 等. 海外深水复杂地质条件下时深转换难点及技术对策[J]. 地球物理学进展, 2012, 27(4): 1484-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204024.htmZhang Y D, Peng J Y, Hao L Y, et al. Time-depth conversion difficulties and technical countermeasures for overseas deepwater and complex geological conditions[J]. Progress in Geophysics, 2012, 27(4): 1484-1491 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204024.htm [13] 饶溯, 胡滨. 基于崎岖海底定量校正的时深转换方法[J]. 海洋地质前沿, 2019, 35(12): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201912009.htmRao S, Hu B. The correction of rugged seabed based on structural similarity[J]. Marine Geology Frontiers, 2019, 35(12): 66-73 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201912009.htm [14] 张志明, 曹丹平, 印兴耀, 等. 时深转换中的井震联合速度建模方法研究与应用现状[J]. 地球物理学进展, 2016, 31(5): 2276-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605054.htmZhang Z M, Cao D P, Yin X Y, et al. Research and application status of well-seismic velocity modeling method in time-depth conversion[J]. Progress in Geophysics, 2016, 31(5): 2276-2284 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605054.htm [15] 任婷, 邓勇, 覃殿明, 等. 琼东南盆地深水陆架坡折区地震速度建模与反演的研究与应用[J]. 地球物理学进展, 2020, 35(5): 1962-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202005040.htmRen T, Deng Y, Qin D M, et al. Research and application status of well seismic joint velocity modeling in time-depth conversion[J]. Progress in Geophysics, 2020, 35(5): 1962-1968 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202005040.htm [16] 汪俊, 徐子英, 任卫波. 复杂沉积区地震剖面时深转换的多公式拟合方案及应用[J]. 物探与化探, 2020, 44(1): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202001019.htmWang J, Xu Z Y, Ren W B, et al. The time-to-depth conversion based on multi-functions fitting solution and its application to complicated sedimentary area[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 149-154 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202001019.htm [17] Su C, Xu H, Zhong D, et al. Low relief structure interpretation and mapping of the Donghe Sandstone thin reservoir based on seismic data[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107945. doi: 10.1016/j.petrol.2020.107945 [18] Jianmin W, Jiayuan W. Low-amplitude structures and oil-gas enrichment on the Yishaan Slope, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(1): 52-60. doi: 10.1016/S1876-3804(13)60005-1 [19] Li B. The study and application of low relief structure interpretation and mapping[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 170(2): 022031. [20] 刘道理, 汪瑞良, 秦成岗, 等. 利用特色叠前深度偏移技术消除崎岖海底影响[J]. 海相油气地质, 2013, 18(1): 67-70. doi: 10.3969/j.issn.1672-9854.2013.01.010Liu D L, Wang R L, Qin C G, et al. Special pre-stack depth migration technology removing influences of rough seafloor: An example of application in Panyu-Liuhua sea area, Pearl River Mouth Basin[J]. Marine Oil and Gas, 2013, 18(1): 67-70 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2013.01.010 [21] 陈胜红. 珠江口盆地东部陆架坡折带PY35-2气藏地质地球物理综合研究[D]. 成都: 成都理工学大学, 2012.Xie S H. The geological and geophysical comprehensive research of gas reservoir PY35-2 in shelf slope-break zone of the Eastern Pearl River Mouth Basin[D]. Chengdu: Chengdu University of Technology, 2012(in Chinese with English abstract). [22] 鲁全贵, 陈雪芳, 向家万. 一种消除浅层天然气影响的时深转换技术[J]. 天然气地球科学, 2007, 18(4): 616-620. doi: 10.3969/j.issn.1672-1926.2007.04.028Lu Q G, Chen X F, Xiang J W. A time-depth conversion technology to eliminate the influence of shallow natural gas[J]. Natural Gas Geoscience, 2007, 18(4): 616-620 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2007.04.028 [23] 陆基孟. 地震勘探原理[M]. 北京: 石油大学出版社, 2009.Lu J M. Principles of seismic exploration[M]. Beijing: Petroleum University Press, 2009 (in Chinese).