留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江口盆地番禺YZ气田群多因素影响下低幅构造的精细研究

汪生好 李黎 王要森 杨小江 刘振 夏晓燕 蒋玉婷

汪生好, 李黎, 王要森, 杨小江, 刘振, 夏晓燕, 蒋玉婷. 珠江口盆地番禺YZ气田群多因素影响下低幅构造的精细研究[J]. 地质科技通报, 2022, 41(3): 77-84. doi: 10.19509/j.cnki.dzkq.2022.0086
引用本文: 汪生好, 李黎, 王要森, 杨小江, 刘振, 夏晓燕, 蒋玉婷. 珠江口盆地番禺YZ气田群多因素影响下低幅构造的精细研究[J]. 地质科技通报, 2022, 41(3): 77-84. doi: 10.19509/j.cnki.dzkq.2022.0086
Wang Shenghao, Li Li, Wang Yaosen, Yang Xiaojiang, Liu Zhen, Xia Xiaoyan, Jiang Yuting. A fine study on low-rising structure of Panyu YZ gas field group in Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 77-84. doi: 10.19509/j.cnki.dzkq.2022.0086
Citation: Wang Shenghao, Li Li, Wang Yaosen, Yang Xiaojiang, Liu Zhen, Xia Xiaoyan, Jiang Yuting. A fine study on low-rising structure of Panyu YZ gas field group in Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 77-84. doi: 10.19509/j.cnki.dzkq.2022.0086

珠江口盆地番禺YZ气田群多因素影响下低幅构造的精细研究

doi: 10.19509/j.cnki.dzkq.2022.0086
基金项目: 

中海油有限综合科研“万亿大气区”项目“南海东部大中型天然气田勘探潜力与突破方向” KJZH-2021-0003-00

详细信息
    作者简介:

    汪生好(1983—),男,工程师,主要从事油藏地球物理研究工作。E-mail: wangshh7@cnooc.com.cn

  • 中图分类号: P542

A fine study on low-rising structure of Panyu YZ gas field group in Pearl River Mouth Basin

  • 摘要:

    珠江口盆地YZ气田群位于陆架边缘区域,气藏埋深大于3 000 m,构造研究面临水深变化大、表层低速泥岩厚度变化大、小范围浅层气等多种因素影响的问题,气藏顶界深度精细预测难度大,给气田开发方案实施带来风险。针对该问题提出一种处理解释一体化的研究思路: 首先,沿目的层及其上部地震反射标志层横向加密拾取地震速度谱,提高速度分析的精度;其次,利用已钻井合成地震记录标定后的速度对地震速度进行宏观校正,消除井震速度系统误差,应用校正后的速度进行时深转换,得到初始深度构造;通过相关性分析法明确井点处剩余误差的主要来源,以相关性趋势面为约束,结合井点剩余误差编辑误差网格以校正初始深度构造。最后,通过校正井点残差得到较高精度的深度构造。气田开发的实践表明,该方法预测的构造深度和开发井实钻深度的误差由原来的10~40 m降至10 m以内,成功提高了目标区构造预测精度,有效指导了该区开发井的设计和实施,降低了气田开发的风险。因此,对于类似地质条件下油气田,其构造精细研究不单是唯数据驱动的速度分析及偏移成像,认清构造影响因素并予以消除也是关键。

     

  • 图 1  研究区构造位置图

    Figure 1.  Structural location map of the study area

    图 2  研究区地震层位解释剖面图

    Figure 2.  Seismic horizon interpretation profile of the study area

    图 3  研究区海底时间域层位解释等值线图

    Figure 3.  Contour map of seabed time in the study area

    图 4  研究区海底至H3地层时间厚度图

    Figure 4.  Time thickness map from seabed to H3 formation in the study area

    图 5  已钻井VSP时深关系曲线对比图

    Figure 5.  Comparison of time-depth curves using VSP of drilled wells

    图 6  处理解释一体化成图技术流程

    Figure 6.  Technical process of structure mapping by integration of processing and interpretation

    图 7  沿测线方向地震速度谱采样点分布剖面示意图

    Figure 7.  Profile of seismic velocity spectrum sampling point distribution along inline

    图 8  速度谱不同拾取精度情况下沿层平均速度对比

    Figure 8.  Comparison of average velocity along layer using different spectrum picking

    图 9  已钻井VSP速度和沿层地震速度对比

    Figure 9.  Comparison of VSP velocity and seismic velocity along layer

    图 10  井驱宏观校正前后沿层地震平均速度对比

    Figure 10.  Comparison of average velocity alonglayer before and after well-driven macro correction

    图 11  YZ-A/B/C气田群ZJ1顶界构造剩余误差相关性分析

    Figure 11.  Correlation analysis of residual error of ZJ1 in YZ-A/B/C gas fields

    图 12  H3层时间网格与ZJ1顶界构造剩余误差网格对比

    Figure 12.  Comparison between time gridof H3 and residual error grid of ZJ1

    图 13  YZ气田群ZJ1顶界深度构造图

    Figure 13.  Structure map of ZJ1 in YZ gas field group

    图 14  ZJ1顶界开发井预测深度与实钻深度误差

    Figure 14.  Structure error between predicted depth and actual drilling depth of ZJ1

    表  1  ZJ1顶界时深转换后构造误差对比

    Table  1.   Comparison of structural errors aftertime-depth conversion of ZJ1

    井名 YZ-A-1 YZ-A-2 YZ-A-3 YZ-B-1 YZ-B-2 YZ-B-3 YZ-B-4 YZ-C-1 YZ-C-2 YZ-C-3 YZ-C-4 YZ-C-5 YZ-C-6 均方根
    单井VSP时深关系
    拟合较深误差/m
    -191.71 -216.87 -140.94 -220.45 -236.62 -219.07 -43.41 2.80 43.02 30.86 28.41 45.41 72.74 100.42
    常规地震速度宏观
    校正转深误差/m
    -47.61 -70.20 10.50 -76.52 -69.38 -54.56 -45.47 68.90 45.14 74.87 72.29 34.05 67.36 59.69
    下载: 导出CSV

    表  2  ZJ1顶界时深转换后构造及剩余误差校正后构造误差对比

    Table  2.   Structure error comparison between time-depth conversion and residual error correction of ZJ1

    井名 单井VSP时深转换后误差/m 常规地震速度校正后的误差/m 沿层密点速度校正后误差/m 剩余误差校正后误差(残差)/m
    YZ-A-1 -191.41 -47.61 -35.17 -1.06
    YZ-A-2 -216.87 -70.20 -58.88 -4.08
    YZ-A-3 -140.91 10.05 6.02 3.02
    YZ-B-1 -220.45 -76.52 -55.63 -5.63
    YZ-B-2 -236.62 -69.38 -51.66 4.00
    YZ-B-3 -219.07 -54.56 -43.23 3.30
    YZ-B-4 -43.41 -45.47 -38.46 -0.06
    YZ-C-1 2.80 68.90 57.51 9.20
    YZ-C-2 -43.02 45.14 31.30 0.20
    YZ-C-3 -30.86 74.87 64.75 5.75
    YZ-C-4 28.41 72.29 58.84 -1.16
    YZ-C-5 45.41 34.05 32.24 -9.76
    YZ-C-6 -72.74 67.36 49.08 11.08
    均方根 100.42 59.69 47.41 5.69
    下载: 导出CSV
  • [1] 何敏, 朱明, 汪瑞良, 等. 白云深水崎岖海底区时深转换方法探讨[J]. 地球物理学进展, 2007, 22(3): 966-971. doi: 10.3969/j.issn.1004-2903.2007.03.046

    He M, Zhu M, Wang R L, et al. The discussion of time-depth conversion methods in the baiyundeepwater rough seafloor area[J]. Progress in Geophysics, 2007, 22(3): 966-971 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2007.03.046
    [2] 刘杰, 秦成岗, 全志臻, 等. 一种识别陆架坡折带"隐形构造"的时深转换方法[J]. 石油地球物理勘探, 2013, 48(1): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201301020.htm

    Liu J, Qin C G, Quan Z Z, et al. A time-depth conversion method for hidden structure identification in shelf-break belts[J]. Oil Geophysical Prospecting, 2013, 48(1): 128-133 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201301020.htm
    [3] 谢玉洪. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景[J]. 地质科技通报, 2020, 39(5): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005010.htm

    Xie Y H. Sedimentary characteristics and hydrocarbom exploration potential of the upstream of the Central Canyon in the Yinggehai and Qiongdongnan Basins[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 69-78 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005010.htm
    [4] 熊鹏飞, 姜涛, 匡增桂, 等. 琼东南盆地南部梅山组丘状体沉积特征及成因机制[J]. 地质科技通报, 2021, 40(4): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104002.htm

    Xiong P F, Jiang T, Kuang Z G, et al. Sedimentary characteristics and origin of moundes in Meishan Formation, southern Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 11-21 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104002.htm
    [5] 张磊岗, 屈红军, 陈硕, 等. 浅海砂质碎屑流沉积特征与模式: 以莺歌海盆地东方气田莺二段为例[J]. 地质科技通报, 2021, 40(6): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106016.htm

    Zhang L G, Qu H J, Chen S, et al. Sedimentary characteristics and model of shallow sea sandy debrisflow: A case study of Ying Ⅱ Member in the Dongfang 1-1 Gas Field, Yinggehai Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 140-150 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106016.htm
    [6] 凌云, 郭建明, 郭向宇, 等. 油藏描述中的井震时深转换技术研究[J]. 石油物探, 2011, 50(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201101003.htm

    Ling Y, Guo J M, Guo X Y, et al. Research on time-depth conversion by well-to-seismic in reservoir characterization[J]. Petroleum Geophysical Prospecting, 2011, 50(1): 1-13 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201101003.htm
    [7] 杨军, 王永刚, 杨彦敏, 等. 阿尔及利亚416a-417区块构造精细成图方法[J]. 石油物探, 2007, 46(3): 294-301. doi: 10.3969/j.issn.1000-1441.2007.03.012

    Yang J, Wang Y G, Yang Y M, et al. Fine mapping of geological structure in 416a-417 area of Algeria[J]. Petroleum Geophysical Prospecting, 2007, 46(3): 294-301 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2007.03.012
    [8] 刘建芳, 季红军, 杨彦敏, 等. 相关分析构造图误差校正方法应用及效果[J]. 勘探地球物理进展, 2008, 31(2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200802012.htm

    Liu J F, Ji H J, Yang Y M, et al. Correlation analysis structure diagram error correction method and effect[J]. Advances in Exploration Geophysics, 2008, 31(2): 143-147 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200802012.htm
    [9] 范芬, 刘爱群, 任科英, 等. 乐东-陵水坡折带速度分析及时深转换方法[J]. 物探与化探, 2016, 40(6): 1185-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201606020.htm

    Fan F, Liu A Q, Ren K Y, et al. Velocity analysis and time-depth conversion study of Ledong-Lingshui slope-break belt[J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1185-1190 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201606020.htm
    [10] 秦成岗, 施和生, 张忠涛, 等. 珠江口盆地番禺低隆起-白云凹陷北坡SQ 21.0层序陆架坡折带沉积特征及油气勘探潜力[J]. 中国海上油气, 2011, 23(1): 14-18. doi: 10.3969/j.issn.1673-1506.2011.01.003

    Qin C G, Shi H S, Zhang Z T, et al. Sedimentary characteristics and hydrocarbon exploration potential along the SQ21.0 sequence shelf-break zone on Panyu low-uplift and the north slope of Baiyun sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(1): 14-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2011.01.003
    [11] 李达, 李茂, 陶倩倩, 等. 提高南海西部文昌X油田低幅构造成图精度的举措[J]. 地质科技情报, 2017, 36(3): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703010.htm

    Li D, Li M, Tao Q Q, et al. Measures to improve the accuracy of low-amplitude structural mapping of Wenchang X Oilfield in the western South China Sea[J]. Geological Science and Technology Information, 2017, 36(3): 70-76 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703010.htm
    [12] 张英德, 彭佳勇, 郝立业, 等. 海外深水复杂地质条件下时深转换难点及技术对策[J]. 地球物理学进展, 2012, 27(4): 1484-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204024.htm

    Zhang Y D, Peng J Y, Hao L Y, et al. Time-depth conversion difficulties and technical countermeasures for overseas deepwater and complex geological conditions[J]. Progress in Geophysics, 2012, 27(4): 1484-1491 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204024.htm
    [13] 饶溯, 胡滨. 基于崎岖海底定量校正的时深转换方法[J]. 海洋地质前沿, 2019, 35(12): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201912009.htm

    Rao S, Hu B. The correction of rugged seabed based on structural similarity[J]. Marine Geology Frontiers, 2019, 35(12): 66-73 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201912009.htm
    [14] 张志明, 曹丹平, 印兴耀, 等. 时深转换中的井震联合速度建模方法研究与应用现状[J]. 地球物理学进展, 2016, 31(5): 2276-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605054.htm

    Zhang Z M, Cao D P, Yin X Y, et al. Research and application status of well-seismic velocity modeling method in time-depth conversion[J]. Progress in Geophysics, 2016, 31(5): 2276-2284 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605054.htm
    [15] 任婷, 邓勇, 覃殿明, 等. 琼东南盆地深水陆架坡折区地震速度建模与反演的研究与应用[J]. 地球物理学进展, 2020, 35(5): 1962-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202005040.htm

    Ren T, Deng Y, Qin D M, et al. Research and application status of well seismic joint velocity modeling in time-depth conversion[J]. Progress in Geophysics, 2020, 35(5): 1962-1968 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202005040.htm
    [16] 汪俊, 徐子英, 任卫波. 复杂沉积区地震剖面时深转换的多公式拟合方案及应用[J]. 物探与化探, 2020, 44(1): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202001019.htm

    Wang J, Xu Z Y, Ren W B, et al. The time-to-depth conversion based on multi-functions fitting solution and its application to complicated sedimentary area[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 149-154 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202001019.htm
    [17] Su C, Xu H, Zhong D, et al. Low relief structure interpretation and mapping of the Donghe Sandstone thin reservoir based on seismic data[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107945. doi: 10.1016/j.petrol.2020.107945
    [18] Jianmin W, Jiayuan W. Low-amplitude structures and oil-gas enrichment on the Yishaan Slope, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(1): 52-60. doi: 10.1016/S1876-3804(13)60005-1
    [19] Li B. The study and application of low relief structure interpretation and mapping[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 170(2): 022031.
    [20] 刘道理, 汪瑞良, 秦成岗, 等. 利用特色叠前深度偏移技术消除崎岖海底影响[J]. 海相油气地质, 2013, 18(1): 67-70. doi: 10.3969/j.issn.1672-9854.2013.01.010

    Liu D L, Wang R L, Qin C G, et al. Special pre-stack depth migration technology removing influences of rough seafloor: An example of application in Panyu-Liuhua sea area, Pearl River Mouth Basin[J]. Marine Oil and Gas, 2013, 18(1): 67-70 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2013.01.010
    [21] 陈胜红. 珠江口盆地东部陆架坡折带PY35-2气藏地质地球物理综合研究[D]. 成都: 成都理工学大学, 2012.

    Xie S H. The geological and geophysical comprehensive research of gas reservoir PY35-2 in shelf slope-break zone of the Eastern Pearl River Mouth Basin[D]. Chengdu: Chengdu University of Technology, 2012(in Chinese with English abstract).
    [22] 鲁全贵, 陈雪芳, 向家万. 一种消除浅层天然气影响的时深转换技术[J]. 天然气地球科学, 2007, 18(4): 616-620. doi: 10.3969/j.issn.1672-1926.2007.04.028

    Lu Q G, Chen X F, Xiang J W. A time-depth conversion technology to eliminate the influence of shallow natural gas[J]. Natural Gas Geoscience, 2007, 18(4): 616-620 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2007.04.028
    [23] 陆基孟. 地震勘探原理[M]. 北京: 石油大学出版社, 2009.

    Lu J M. Principles of seismic exploration[M]. Beijing: Petroleum University Press, 2009 (in Chinese).
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  365
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08

目录

    /

    返回文章
    返回