Discovery of the Lower Cretaceous aeolian sandstones in the Wulong Formation in Yichang, Hubei Province, and its provenance
-
摘要:
白垩纪时期, 我国中纬度地区广泛发育风成砂岩, 指示了副热带沙漠带的存在。对白垩纪风成砂岩的发育年代、分布范围、物质来源、所记录的古风向等方面的研究, 有助于重建东亚地区白垩纪不同时期的古地理和古气候特征。为此, 对湖北宜昌地区下白垩统五龙组(K1
w )中发育的一套巨厚的白垩纪砂岩开展了系统的野外沉积特征调查、室内粒度分析、石英颗粒表面微观特征的扫描电镜观察, 以及碎屑锆石U-Pb年代学研究, 探讨了其成因和物源特征。结果表明: ①该套砂岩分布于江汉盆地西缘白垩纪洪积扇的扇缘部位, 出露厚度超过40 m, 发育大型高角度交错层理, 其粒度组成十分均一, 其野外特征和粒度组成符合风成沙的特征; ②扫描电镜观察显示, 石英颗粒普遍磨圆较好, 表面发育碟形和新月形撞击坑, 以及溶蚀作用和沉淀作用导致的微观特征, 与风成砂的特征一致; ③该套砂岩的碎屑锆石年龄存在4个主要的峰值, 分别约为2.46, 1.85 Ga, 780, 170 Ma, 这些年龄峰值与秦岭-大别造山带及黄陵隆起之上沉积盖层的碎屑锆石年龄组成一致, 指示其物源可能主要来自黄陵隆起形成后其上覆盖的南华系-侏罗系的侵蚀物, 同时可能也混入了部分秦岭-大别造山带的物质; ④该套砂岩中最年轻的锆石年龄为(119.9±2.8) Ma, 指示该段地层的年龄不早于早白垩世晚期, 与湖北省地质调查院将五龙组划归下白垩统一致。上述结果指示着该套砂岩为早白垩世时期干旱气候条件下发育于干旱盆地洪积扇边缘的沙漠沉积, 指示着湖北宜昌地区在早白垩世副热高压的影响下已出现了地带性沙漠。Abstract:Objective Eolian sandstones were widely developed in the middle latitudes of China during the Cretaceous era, which indicated the existence of subtropical desert belts. Studies on the age, distribution, provenance, and paleowind directions of Cretaceous aeolian sandstones would be helpful for the reconstruction of paleogeography and paleoclimate in East Asia during different periods of the Cretaceous era.
Methods Here, we report the origin and provenance of a >40 m-thick sandstone layer within the Lower Cretaceous Wulong Formation (K1
w ) in Yichang, Hubei Province by systematically investigating its sedimentary facies in the field, particle size distribution, quartz grain surface textures, and detrital zircon U-Pb chronology.Results The results show that ① The Cretaceous sandstones were developed distal to an alluvial fan system that formed on the western margin of the Jianghan Basin. The thickness of the sandstones outcropped over 40 meters, with large scale high angle cross-bedding, and its grain size is extremely uniform. These sedimentary characteristics are in accordance with modern aeolian sandstones. ②Scanning election microscope images show that the quartz grains are generally well rounded, with disk-shaped and crescent-shaped impact scars and microfeatures caused by dissolution and precipitation on their surface, and these features are consistent with aeolian sands. ③ Four major age peaks were shown at~2.46 Ga, ~1.85 Ga, ~780 Ma and~170 Ma in the detrital zircon spectrum of the sandstones in the Wulong Formation. These peaks are consistent with the zircon ages of the Qinling-Dabie Orogen Belt and the sedimentary cover of the Huangling Dome, indicating that the sandstones may be mainly derived from the erosion of the Nanhua-Jurassic strata after the uplift of the Huangling Dome, as well as erosions from the Qinling-Dabie Orogen. ④ The youngest zircon grain in the sandstone was (119.9±2.8) Ma, indicating that the age of the Wulong Formation was not earlier than the late Early Cretaceous and was consistent with the conclusion from geological survey which considered the Lower Cretaceous Wulong Formation.
Conclusion These results show that the sandstones were desert deposits that developed at the margin of diluvial fan of arid basin under the late Early Cretaceous arid climate, indicating that the Yichang area of Hubei Province was within the zonal deserts since the Early Cretaceous period under the influence of the subtropical high.
-
Key words:
- Cretaceous area /
- eolian sandstones /
- detrital zircon /
- provenance /
- planetary wind system /
- Yichang, Hubei Province
-
图 1 湖北宜昌地区的大地构造单元(a)及区域地质简图(b)(据文献[27]修改)
Figure 1. Geotectonic units (a) and regional geological schematic map (b) in Yichang, Hubei Province
表 1 湖北宜昌地区下白垩统五龙组砂岩粒度参数
Table 1. Grain-size parameters of the sandstone within the Lower Cretaceous Wulong Formation in Yichang, Hubei Province
样品 粒度平均值Mz/ϕ 偏度SK 峰态KL Y-1 4.35 0.27 0.87 Y-2 4.36 0.26 0.86 Y-3 4.38 0.27 0.86 Y-4 4.38 0.29 0.75 Y-5 4.39 0.28 0.75 Y-6 4.02 0.52 0.81 Y-7 4.02 0.52 0.81 平均值 4.27 0.34 0.82 注:测试单位为中国地质大学(武汉)流域关键带演化湖北省重点实验室; 测试仪器为Mastersizer 3000型激光粒度仪 表 2 湖北宜昌地区五龙组风成砂岩碎屑锆石年龄
Table 2. Detrital zircons U-Pb ages of the aeolian sandstones within the Wulong Formation in Yichang, Hubei Province
样品号 Th/U 比值 年龄/Ma 谐和度/% 最佳年龄/Ma 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ LQZ-1 0.98 0.051 92 0.002 01 0.266 55 0.010 36 0.037 36 0.000 58 283.4 88.9 239.9 8.3 236.5 3.6 98 236.5 3.6 LQZ-2 0.61 0.101 44 0.002 19 4.149 13 0.089 68 0.298 44 0.003 24 1 650.3 44.9 1 664.0 17.7 1 683.6 16.1 98 1 650.3 44.9 LQZ-3 1.19 0.065 90 0.001 36 1.225 96 0.024 66 0.135 56 0.001 22 1 200.0 47.2 812.5 11.3 819.5 7.0 99 819.5 7.0 LQZ-4 0.30 0.112 87 0.001 24 5.355 08 0.062 81 0.344 34 0.002 80 1 846.0 19.0 1 877.7 10.1 1 907.5 13.4 98 1 846.0 19.0 LQZ-5 0.49 0.116 43 0.001 39 5.650 03 0.069 54 0.352 62 0.002 99 1 902.2 21.8 1 923.8 10.7 1 947.1 14.3 98 1 902.2 21.8 LQZ-6 0.62 0.047 31 0.001 06 0.130 78 0.002 95 0.020 09 0.000 19 64.9 53.7 124.8 2.7 128.2 1.2 97 128.2 1.2 LQZ-7 0.41 0.102 91 0.001 63 4.314 68 0.071 42 0.305 04 0.003 05 1 677.5 29.3 1 696.2 13.7 1 716.2 15.1 98 1 677.5 29.3 LQZ-8 0.25 0.113 61 0.001 34 4.483 52 0.054 76 0.286 97 0.002 62 1 857.7 21.5 1 727.9 10.2 1 626.4 13.2 93 1 857.7 21.5 LQZ-9 0.81 0.172 91 0.002 55 11.674 33 0.179 08 0.491 73 0.005 33 2 587.0 24.4 2 578.6 14.5 2 578.1 23.1 99 2 587.0 24.4 LQZ-10 0.59 0.061 38 0.001 37 0.833 34 0.018 35 0.098 91 0.000 96 653.7 47.1 615.5 10.2 608.0 5.6 98 608.0 5.6 LQZ-11 1.02 0.054 74 0.001 90 0.276 71 0.009 53 0.037 13 0.000 46 466.7 75.9 248.0 7.6 235.0 2.8 94 235.0 2.8 LQZ-12 0.23 0.115 48 0.001 23 5.410 38 0.060 16 0.340 58 0.003 00 1 887.4 -13.4 1 886.5 9.6 1 889.5 14.5 99 1 887.4 -13.4 LQZ-14 0.65 0.068 82 0.001 54 1.225 78 0.028 47 0.129 07 0.001 13 894.4 41.7 812.4 13.0 782.5 6.5 96 782.5 6.5 LQZ-15 0.21 0.113 70 0.001 12 4.963 74 0.055 92 0.316 97 0.002 92 1 861.1 17.1 1 813.2 9.6 1 774.9 14.3 97 1 861.1 17.1 LQZ-16 0.62 0.131 18 0.001 66 7.143 95 0.093 52 0.395 82 0.003 62 2 113.9 22.5 2 129.5 11.7 2 149.8 16.7 99 2 113.9 22.5 LQZ-17 0.83 0.223 17 0.002 39 18.803 50 0.232 20 0.610 90 0.005 38 3 005.6 17.0 3 031.8 12.1 3 073.6 21.6 98 3 005.6 17.0 LQZ-18 0.45 0.076 17 0.001 06 2.001 32 0.028 99 0.191 08 0.001 80 1 099.7 27.8 1 116.0 9.8 1 127.2 9.8 98 1 099.7 27.8 LQZ-19 1.66 0.066 82 0.001 98 0.972 33 0.025 48 0.107 47 0.001 60 831.5 63.0 689.7 13.1 658.0 9.3 95 658.0 9.3 LQZ-20 1.41 0.068 13 0.001 56 1.240 09 0.029 19 0.132 35 0.001 35 872.2 43.5 818.9 13.2 801.3 7.7 97 801.3 7.7 LQZ-21 2.34 0.065 51 0.003 12 1.072 21 0.047 84 0.120 32 0.002 47 790.7 100.0 739.8 23.4 732.4 14.2 98 732.4 14.2 LQZ-22 0.48 0.194 08 0.002 05 13.701 43 0.147 57 0.513 23 0.004 57 2 776.9 16.5 2 729.3 10.4 2 670.4 19.5 97 2 776.9 16.5 LQZ-23 0.63 0.063 95 0.001 07 1.127 59 0.018 98 0.128 30 0.001 20 738.9 35.2 766.6 9.1 778.2 6.9 98 778.2 6.9 LQZ-25 0.63 0.135 96 0.001 73 6.919 77 0.089 85 0.369 67 0.003 25 2 176.2 22.2 2 101.2 11.6 2 027.9 15.3 96 2 176.2 22.2 LQZ-26 1.13 0.066 59 0.002 29 1.202 48 0.039 07 0.132 22 0.001 92 833.3 71.4 801.7 18.0 800.5 11.0 99 800.5 11.0 LQZ-27 0.52 0.154 11 0.001 72 9.426 51 0.106 38 0.443 90 0.003 43 2 392.3 18.8 2 380.4 10.5 2 368.1 15.4 99 2 392.3 18.8 LQZ-28 1.06 0.065 80 0.001 22 1.182 00 0.020 98 0.131 02 0.001 26 1 200.0 38.9 792.2 9.8 793.7 7.2 99 793.7 7.2 LQZ-29 0.72 0.131 17 0.001 76 5.837 74 0.084 59 0.323 27 0.003 16 2 113.9 19.4 1 952.0 12.6 1 805.7 15.4 92 2 113.9 19.4 LQZ-30 0.07 0.055 48 0.001 58 0.525 89 0.014 55 0.069 19 0.000 79 431.5 64.8 429.1 9.7 431.3 4.8 99 431.3 4.8 LQZ-31 0.15 0.116 50 0.001 27 5.306 61 0.060 71 0.330 54 0.002 73 1 903.4 20.2 1 869.9 9.9 1 841.0 13.3 98 1 903.4 20.2 LQZ-32 0.22 0.074 49 0.001 91 1.672 05 0.042 45 0.163 61 0.001 75 1 054.6 47.2 998.0 16.1 976.8 9.7 97 976.8 9.7 LQZ-33 1.08 0.070 33 0.002 36 1.139 22 0.037 57 0.118 67 0.001 56 938.9 63.9 772.1 17.8 722.9 9.0 93 722.9 9.0 LQZ-34 0.65 0.053 89 0.002 62 0.346 54 0.015 31 0.046 24 0.000 67 364.9 109.2 302.1 11.5 291.4 4.2 96 291.4 4.2 LQZ-35 0.28 0.056 06 0.001 37 0.558 51 0.013 56 0.072 68 0.000 74 453.8 55.6 450.6 8.8 452.3 4.5 99 452.3 4.5 LQZ-36 0.36 0.067 02 0.001 20 1.311 36 0.024 28 0.142 48 0.001 52 838.9 -162.0 850.7 10.7 858.7 8.6 99 858.7 8.6 LQZ-37 0.66 0.050 19 0.001 78 0.144 68 0.004 97 0.021 10 0.000 24 211.2 81.5 137.2 4.4 134.6 1.5 98 134.6 1.5 LQZ-38 0.60 0.051 27 0.002 22 0.254 26 0.010 91 0.036 40 0.000 59 253.8 100.0 230.0 8.8 230.5 3.7 99 230.5 3.7 LQZ-39 0.93 0.039 97 0.003 26 0.156 06 0.007 31 0.021 41 0.000 44 error error 147.2 6.4 136.6 2.8 92 136.6 2.8 LQZ-40 0.65 0.166 68 0.001 55 11.201 76 0.108 64 0.487 90 0.003 62 2 524.4 15.7 2 540.1 9.2 2 561.6 15.8 99 2 524.4 15.7 LQZ-41 0.40 0.113 99 0.001 19 5.049 81 0.056 13 0.322 02 0.002 81 1 864.8 13.9 1 827.7 9.5 1 799.6 13.7 98 1 864.8 13.9 LQZ-42 0.71 0.162 05 0.002 02 10.865 50 0.156 54 0.486 98 0.004 96 2 476.8 20.2 2 511.7 13.5 2 557.6 21.5 98 2 476.8 20.2 LQZ-43 0.51 0.119 62 0.001 29 5.872 43 0.070 47 0.356 71 0.003 37 1 950.3 19.0 1 957.2 10.5 1 966.5 16.1 99 1 950.3 19.0 LQZ-44 0.25 0.115 08 0.001 15 5.409 27 0.063 30 0.341 43 0.003 27 1 881.2 17.1 1 886.3 10.1 1 893.5 15.8 99 1 881.2 17.1 LQZ-45 0.92 0.118 32 0.001 32 5.793 07 0.068 27 0.355 78 0.003 07 1 931.5 20.1 1 945.4 10.3 1 962.2 14.6 99 1 931.5 20.1 LQZ-46 1.39 0.121 14 0.001 29 5.735 18 0.070 40 0.343 69 0.003 13 1 973.2 18.8 1 936.7 10.7 1 904.4 15.0 98 1 973.2 18.8 LQZ-47 0.98 0.063 19 0.000 92 1.071 37 0.016 07 0.123 24 0.001 05 714.5 31.5 739.4 7.9 749.2 6.1 98 749.2 6.1 LQZ-48 0.84 0.113 54 0.001 76 4.473 21 0.077 31 0.286 03 0.002 91 1 857.4 28.1 1 726.0 14.4 1 621.7 14.6 93 1 857.4 28.1 LQZ-49 0.42 0.103 39 0.001 39 4.329 76 0.058 91 0.304 51 0.002 56 1 687.0 24.5 1 699.0 11.3 1 713.6 12.7 99 1 687.0 24.5 LQZ-50 0.29 0.113 26 0.001 38 5.095 88 0.065 53 0.326 64 0.002 68 1 853.7 22.2 1 835.4 11.0 1 822.1 13.0 99 1 853.7 22.2 LQZ-51 0.68 0.113 51 0.001 33 5.414 53 0.070 12 0.346 20 0.003 04 1 857.4 21.3 1 887.2 11.2 1 916.4 14.6 98 1 857.4 21.3 LQZ-52 0.89 0.112 41 0.002 09 5.407 24 0.100 76 0.349 18 0.003 27 1 838.6 33.2 1 886.0 16.0 1 930.7 15.6 97 1 838.6 33.2 LQZ-53 0.25 0.049 06 0.000 99 0.188 52 0.003 86 0.027 95 0.000 26 150.1 48.1 175.4 3.3 177.7 1.7 98 177.7 1.7 LQZ-54 0.34 0.114 47 0.001 19 5.332 30 0.066 98 0.337 83 0.003 20 1 872.2 23.1 1 874.1 10.8 1 876.2 15.5 99 1 872.2 23.1 LQZ-55 0.21 0.116 45 0.001 15 5.530 69 0.063 66 0.344 47 0.002 91 1 902.8 17.6 1 905.4 10.0 1 908.2 14.0 99 1 902.8 17.6 LQZ-56 0.67 0.115 47 0.001 74 5.647 62 0.080 00 0.356 54 0.003 28 1 887.4 26.4 1 923.4 12.3 1 965.7 15.6 97 1 887.4 26.4 LQZ-57 1.12 0.155 31 0.002 14 8.291 61 0.111 65 0.388 69 0.003 58 2 405.2 22.7 2 263.4 12.3 2 116.8 16.6 93 2 405.2 22.7 LQZ-59 0.52 0.132 44 0.002 45 6.968 02 0.141 29 0.381 74 0.005 11 2 131.5 32.4 2 107.4 18.1 2 084.4 23.9 98 2 131.5 32.4 LQZ-60 0.55 0.065 51 0.001 39 1.104 97 0.022 12 0.123 11 0.001 24 790.7 44.4 755.8 10.7 748.5 7.1 99 748.5 7.1 LQZ-61 0.25 0.112 99 0.001 19 4.695 69 0.055 00 0.301 55 0.002 72 1 847.8 52.3 1 766.5 9.9 1 699.0 13.5 96 1 847.8 52.3 LQZ-62 0.70 0.112 42 0.001 26 5.072 08 0.063 35 0.327 22 0.002 91 1 839.2 19.3 1 831.4 10.7 1 824.9 14.2 99 1 839.2 19.3 LQZ-63 0.34 0.068 36 0.001 77 1.376 23 0.034 96 0.147 11 0.001 58 879.6 49.1 878.8 14.9 884.8 8.9 99 884.8 8.9 LQZ-64 0.52 0.065 14 0.000 94 1.149 81 0.017 12 0.128 20 0.001 12 788.9 29.6 777.2 8.1 777.6 6.4 99 777.6 6.4 LQZ-65 1.20 0.060 24 0.001 72 0.490 45 0.013 62 0.059 15 0.000 67 613.0 61.1 405.2 9.3 370.5 4.1 91 370.5 4.1 LQZ-66 1.95 0.040 65 0.003 94 0.135 74 0.008 23 0.018 77 0.000 44 error error 129.2 7.4 119.9 2.8 92 119.9 2.8 LQZ-67 0.70 0.045 39 0.003 98 0.154 47 0.009 04 0.021 39 0.000 46 error 145.8 8.0 136.4 2.9 93 136.4 2.9 LQZ-69 0.81 0.112 15 0.001 28 5.290 03 0.063 06 0.342 67 0.002 99 1 835.2 20.7 1 867.3 10.3 1 899.5 14.4 98 1 835.2 20.7 LQZ-70 0.11 0.126 69 0.001 43 5.276 53 0.060 05 0.302 14 0.002 50 2 053.7 20.1 1 865.1 9.8 1 701.9 12.4 90 2 053.7 20.1 LQZ-71 0.75 0.104 74 0.002 13 4.471 64 0.087 15 0.311 67 0.003 02 1 709.6 37.2 1 725.7 16.2 1 748.9 14.9 98 1 709.6 37.2 LQZ-72 0.69 0.067 10 0.000 86 1.325 45 0.018 39 0.143 24 0.001 19 842.6 32.4 856.9 8.1 863.0 6.7 99 863.0 6.7 LQZ-73 0.48 0.105 79 0.001 30 4.128 12 0.054 88 0.283 08 0.002 26 1 728.1 22.4 1 659.9 10.9 1 606.8 11.4 96 1 728.1 22.4 LQZ-74 0.72 0.066 58 0.001 03 1.212 71 0.018 11 0.132 42 0.001 02 833.3 32.6 806.4 8.3 801.7 5.8 99 801.7 5.8 LQZ-75 0.71 0.113 26 0.001 40 5.249 83 0.068 52 0.336 54 0.002 92 1 853.7 22.2 1 860.7 11.2 1 870.0 14.1 99 1 853.7 22.2 LQZ-76 0.28 0.050 34 0.000 75 0.189 61 0.002 93 0.027 35 0.000 25 209.3 39.8 176.3 2.5 174.0 1.6 98 174.0 1.6 LQZ-77 0.36 0.114 64 0.001 23 5.055 46 0.058 41 0.320 02 0.002 68 1 875.9 19.9 1 828.7 9.9 1 789.8 13.1 97 1 875.9 19.9 LQZ-78 0.77 0.051 01 0.002 54 0.152 11 0.007 11 0.020 87 0.000 31 242.7 114.8 143.8 6.3 133.2 1.9 92 133.2 1.9 LQZ-79 0.78 0.065 73 0.001 29 1.129 95 0.020 54 0.125 69 0.001 16 798.2 36.1 767.7 9.8 763.2 6.7 99 763.2 6.7 LQZ-80 0.23 0.114 12 0.001 12 5.210 58 0.059 27 0.330 86 0.002 56 1 865.7 17.9 1 854.3 9.8 1 842.6 12.4 99 1 865.7 17.9 LQZ-81 0.62 0.160 15 0.001 61 10.702 47 0.120 54 0.484 22 0.003 57 2 457.1 17.7 2 497.6 10.6 2 545.6 15.6 98 2 457.1 17.7 LQZ-82 0.43 0.114 46 0.001 51 5.251 36 0.072 65 0.333 41 0.003 05 1 872.2 24.1 1 861.0 11.9 1 854.9 14.8 99 1 872.2 24.1 LQZ-83 1.07 0.158 85 0.001 76 9.691 28 0.111 62 0.443 00 0.003 61 2 443.5 18.8 2 405.9 10.7 2 364.0 16.2 98 2443.5 18.8 LQZ-84 1.26 0.053 52 0.001 67 0.307 73 0.009 31 0.042 12 0.000 45 350.1 70.4 272.4 7.2 266.0 2.8 97 266.0 2.8 LQZ-85 0.97 0.111 87 0.001 22 4.634 40 0.059 00 0.300 34 0.002 57 1 831.5 19.9 1 755.5 10.7 1 693.0 12.8 96 1 831.5 19.9 LQZ-86 1.47 0.165 45 0.001 65 10.568 72 0.125 67 0.463 13 0.003 90 2 512.0 16.7 2 486.0 11.2 2 453.4 17.2 98 2 512.0 16.7 LQZ-87 0.68 0.175 07 0.002 33 11.719 98 0.158 27 0.486 85 0.004 15 2 606.5 22.2 2 582.3 12.8 2 557.0 18.0 99 2 606.5 22.2 LQZ-88 1.11 0.159 32 0.001 67 10.458 16 0.122 99 0.476 49 0.003 91 2 450.0 17.4 2 476.2 11.0 2 512.0 17.1 98 2 450.0 17.4 LQZ-89 0.53 0.165 62 0.001 58 11.133 19 0.163 44 0.487 62 0.006 11 2 513.9 16.8 2 534.3 13.8 2 560.4 26.5 98 2 513.9 16.8 LQZ-90 0.97 0.069 50 0.002 95 1.334 21 0.052 39 0.140 02 0.001 89 922.2 82.4 860.7 22.8 844.8 10.7 98 844.8 10.7 LQZ-91 0.59 0.068 38 0.000 95 1.362 86 0.019 75 0.144 68 0.001 12 879.6 28.9 873.1 8.5 871.1 6.3 99 871.1 6.3 LQZ-92 0.71 0.074 42 0.002 01 1.528 07 0.041 33 0.149 73 0.001 58 1 053.7 54.2 941.7 16.6 899.5 8.8 95 899.5 8.8 LQZ-93 0.40 0.127 98 0.003 31 6.289 68 0.160 53 0.361 29 0.005 12 2 070.1 46.5 2 017.0 22.4 1 988.3 24.3 98 2 070.1 46.5 LQZ-94 1.02 0.106 65 0.001 52 4.282 39 0.066 08 0.291 62 0.002 69 1 742.9 26.1 1 690.0 12.8 1 649.6 13.5 97 1 742.9 26.1 LQZ-96 2.29 0.063 37 0.000 71 0.954 13 0.014 17 0.109 35 0.001 30 720.4 24.1 680.2 7.4 669.0 7.6 98 669.0 7.6 LQZ-97 0.57 0.107 82 0.001 39 4.383 17 0.063 34 0.294 95 0.002 65 1 762.7 23.9 1 709.2 12.0 1 666.2 13.2 97 1 762.7 23.9 LQZ-98 1.09 0.069 13 0.002 15 1.231 63 0.038 64 0.130 06 0.001 41 901.9 63.0 815.1 17.6 788.2 8.1 96 788.2 8.1 LQZ-99 0.86 0.116 07 0.001 35 5.427 33 0.064 93 0.339 88 0.003 08 1 898.2 20.8 1 889.2 10.3 1 886.1 14.8 99 1 898.2 20.8 LQZ-101 0.65 0.130 16 0.001 62 7.360 33 0.100 95 0.410 67 0.003 97 2 101.9 21.1 2 156.2 12.3 2 218.0 18.2 97 2 101.9 21.1 LQZ-102 0.84 0.067 60 0.000 86 1.251 65 0.019 49 0.134 19 0.001 38 857.4 25.9 824.2 8.8 811.7 7.9 98 811.7 7.9 LQZ-103 0.61 0.079 33 0.001 45 1.756 36 0.043 94 0.160 51 0.002 89 1 180.6 36.3 1 029.5 16.2 959.6 16.1 92 959.6 16.1 LQZ-104 1.61 0.064 71 0.001 42 1.175 21 0.026 55 0.132 09 0.001 29 764.8 45.5 789.1 12.4 799.8 7.3 98 799.8 7.3 LQZ-105 0.49 0.118 63 0.001 37 5.702 71 0.070 41 0.349 31 0.003 09 1 935.5 25.0 1 931.8 10.7 1 931.3 14.8 99 1 935.5 25.0 LQZ-106 0.37 0.081 02 0.001 11 2.297 59 0.032 86 0.206 11 0.001 80 1 221.9 27.8 1 211.5 10.2 1 208.1 9.6 99 1 221.9 27.8 LQZ-107 0.64 0.052 95 0.001 81 0.309 71 0.010 59 0.042 68 0.000 52 327.8 105.5 274.0 8.2 269.4 3.2 98 269.4 3.2 LQZ-108 0.16 0.068 42 0.000 96 1.505 39 0.023 19 0.159 52 0.001 38 881.2 27.8 932.6 9.4 954.1 7.7 97 954.1 7.7 LQZ-109 1.06 0.061 56 0.001 62 0.585 18 0.014 58 0.069 29 0.000 84 657.4 55.6 467.8 9.3 431.8 5.1 92 431.8 5.1 LQZ-110 0.36 0.118 72 0.001 20 5.626 62 0.060 36 0.343 84 0.002 44 1 938.9 17.4 1 920.2 9.3 1 905.1 11.8 99 1 938.9 17.4 LQZ-111 0.12 0.116 44 0.001 35 5.211 49 0.063 46 0.325 03 0.002 56 1 902.2 21.5 1 854.5 10.5 1 814.2 12.5 97 1 902.2 21.5 LQZ-112 0.53 0.160 44 0.001 77 10.275 06 0.130 37 0.464 54 0.004 20 2 460.2 18.1 2 459.9 11.9 2 459.6 18.5 99 2 460.2 18.1 LQZ-113 0.76 0.067 09 0.000 89 1.151 38 0.016 62 0.124 45 0.001 04 840.4 32.4 777.9 7.9 756.1 6.0 97 756.1 6.0 LQZ-114 0.49 0.054 95 0.001 27 0.218 22 0.005 07 0.028 91 0.000 27 409.3 47.2 200.4 4.2 183.7 1.7 91 183.7 1.7 LQZ-115 0.37 0.126 37 0.001 52 5.189 78 0.069 40 0.298 06 0.002 81 2 047.8 20.8 1 850.9 11.5 1 681.7 14.0 90 2 047.8 20.8 LQZ-116 0.71 0.157 79 0.002 29 8.124 52 0.124 67 0.375 37 0.004 62 2 431.8 25.2 2 245.0 14.0 2 054.6 21.7 91 2 431.8 25.2 LQZ-117 0.75 0.110 64 0.002 78 4.618 16 0.111 89 0.306 63 0.003 91 1 810.2 45.2 1 752.6 20.3 1 724.1 19.3 98 1 810.2 45.2 LQZ-118 0.78 0.069 17 0.001 51 1.042 71 0.021 02 0.110 43 0.001 24 903.4 45.2 725.3 10.5 675.2 7.2 92 675.2 7.2 LQZ-119 0.05 0.050 75 0.001 76 0.273 52 0.009 34 0.039 16 0.000 46 227.8 81.5 245.5 7.4 247.6 2.8 99 247.6 2.8 LQZ-120 1.13 0.149 51 0.002 11 8.966 14 0.153 68 0.435 91 0.005 64 2 340.4 23.9 2 334.6 15.7 2 332.3 25.3 99 2 340.4 23.9 注:测试单位为中国地质大学(武汉)地质过程与矿产资源国家重点实验室;测试仪器为LA-ICP-MS激光剥蚀等离子体质谱仪 -
[1] Pye K, Tsoar H. Aeolian sand and sand dunes[M]. London: Unwin Hyman, 1990. [2] Hasegawa H, Tada R, Jiang X, et al. Drastic shrinking of the Hadley circulation during the Mid-Cretaceous Supergreenhouse[J]. Climate of the Past, 2012, 8(4): 1323-1337. doi: 10.5194/cp-8-1323-2012 [3] Chumakov N M, Zharkov M A, Herman A B, et al. Climatic belts of the Mid-Cretaceous time[J]. Stratigraphy and Geological Correlation, 1995, 3(3): 42-63. [4] Rodríguez López J P, Clemmensen L B, Lancaster N, et al. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects[J]. Sedimentology, 2014, 61(6): 1487-1534. doi: 10.1111/sed.12123 [5] 董光荣, 王贵勇, 陈惠忠, 等. 中国沙漠形成、演化与青藏高原隆升的关系[C]//佚名. 青藏高原与全球变化研讨会论文集. 北京: 气象出版社, 1994: 24-38.Gong G R, Wang G Y, Chen H Z, et al. The formation and evolution of the deserts in China and their relation to the up lifting of Qinghai-Tibet Plateau[C]//Anon. Symposium on Qinghai-Tibet Plateau and global changes. Beijing: China Meteorological Press, 1994: 24-38(in Chinese with English abstract). [6] Chen R L, Zhu H F, Chen Y, et al. Recognition of aeolian sandstone of Lower Cretaceous in the Southwest Depression, Tarim Basin and its significance[J]. Chinese Science Bulletin, 1994, 39(9): 754-758. [7] 罗旋, 杨申谷, 张亮, 等. 江陵凹陷白垩系红花套组沙漠沉积相分析[J]. 石油地质与工程, 2012, 26(1): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201005.htmLuo X, Yang S G, Zhang L, et al. Desert sedimentary facies analysis of Honghuatao Formation of Cretaceous System in Jiangling Sag[J]. Petroleum Geology and Engineering, 2012, 26(1): 7-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201005.htm [8] Jiang X S, Pan Z X, Fu Q P. Regularity of palaeowind directions of the Early Cretaceous desert in Ordos Basin and climatic significance[J]. Science in China Series D: Earth Sciences, 2001, 44(1): 24-33. doi: 10.1007/BF02906882 [9] Jiang X S, Pan Z X, Xu J S, et al. Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi Province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(1/2): 58-66. [10] 袁桃, 吴驰华, 伊海生, 等. 云南思茅盆地景谷地区下白垩统曼岗组风成砂岩沉积学特征及其古气候意义[J]. 地质学报, 2015, 89(11): 2062-2074. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511018.htmYuan T, Wu C H, Yi H S, et al. Sedimentology characteristics of eolian sandstones in the Lower Cretaceous Mangang Formation in the Jinggu area, Simao Basin, Yunnan and the paleoclimate significance[J]. Acta Geologica Sinica, 2015, 89(11): 2062-2074(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511018.htm [11] 汤海磊. 楚雄盆地东北部白垩纪风成沉积特征与古气候研究[D]. 成都: 成都理工大学, 2020.Tang H L. Sedimentary characteristics and palaeoclimatic implications of the Cretaceous aeolian erg system in the northeastern Chuxiong Basin, China[D]. Chengdu: Chengdu University of Technology, 2020(in Chinese with English abstract). [12] 江新胜, 潘忠习, 傅清平. 四川盆地白垩纪沙漠风向变化规律及其意义[J]. 岩相古地理, 1999, 19(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.000.htmJiang X S, Pan Z X, Fu Q P. The variations of palaeowind direction of the Cretaceous desert in the Sichuan Basin and their significance[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.000.htm [13] 陈清华, 庞飞. 苏北盆地白垩纪沙漠石英颗粒表面特征及环境意义[J]. 特种油气藏, 2008, 15(5): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200805004.htmChen Q H, Pang F. Surface characteristics and environment implication of quartz grains in Cretaceous desert of North Jiangsu Basin[J]. Special Oil and Gas Reservoir, 2008, 15(5): 13-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200805004.htm [14] 黄乐清, 黄建中, 罗来, 等. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义[J]. 沉积学报, 2019, 37(4): 735-748. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904007.htmHuang L Q, Huang J Z, Luo L, et al. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin, Hunan, and its paleoenvironmental significance[J]. Acta Sedimentologica Sinica, 2019, 37(4): 735-748(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904007.htm [15] Jiang X S, Pan Z X, Fu Q P. Primary study on pattern of general circulation of atmosphere before uplift of the Tibetan Plateau in eastern Asia[J]. Science in China Series: Earth Sciences, 2001, 44(8): 680-688. doi: 10.1007/BF02907197 [16] 曹硕. 中国东部晚白垩世风成沉积: 盆山型沙漠体系[D]. 北京: 中国地质大学(北京), 2020.Cao S. Late Cretaceous aeolian deposits in eastern China: The intermountain erg system[D]. Beijing: China University of Geoscience(Beijing), 2020(in Chinese with English abstract). [17] Yu X C, Liu C L, Wang C L, et al. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: Palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110299. doi: 10.1016/j.palaeo.2021.110299 [18] Yu X C, Liu C L, Wang C L, et al. Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in Central China[J]. Marine and Petroleum Geology, 2020, 117: 104390. doi: 10.1016/j.marpetgeo.2020.104390 [19] Shen C B, Donelick R A, O'Sullivan P B, et al. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze Block, Central China[J]. Sedimentary Geology, 2012, 281: 194-207. doi: 10.1016/j.sedgeo.2012.09.009 [20] Li Y, He D, Li D, et al. Detrital zircon U-Pb geochronology and provenance of Lower Cretaceous sediments: Constraints for the northwestern Sichuan pro-foreland basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 52-72. doi: 10.1016/j.palaeo.2016.03.030 [21] 杨振强. 湖北当阳白垩纪风成石英砂[J]. 地质科学, 1983, 15(3): 303-305. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198303013.htmYang Z Q. Observation on Cretaceous eolian quartz sands from Dangyang County, Hubei Province[J]. Scientia Geologica Sinica, 1983, 15(3): 303-305(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198303013.htm [22] 李群, 郭建华, 曾芳, 等. 江汉盆地白垩系沉积相与沉积演化[J]. 西南石油学院学报, 2006, 28(6): 5-8. doi: 10.3863/j.issn.1674-5086.2006.06.002Li Q, Guo J H, Zeng F, et al. Cretaceous sedimentary facies and the evolution in Jianghan Basin[J]. Journal of Southwest Petroleum Institute, 2006, 28(6): 5-8(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2006.06.002 [23] 朱锐, 张昌民, 龚福华, 等. 粒度资料的沉积动力学在沉积环境分析中的应用: 以江汉盆地西北缘上白垩统红花套组沉积为例[J]. 高校地质学报, 2010, 16(3): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201003010.htmZhu R, Zhang C M, Gong F H, et al. Use of sediment dynamic analysis in environment interpretation: A case study on Honghuatao Formation, Upper Cretaceous of western Jianghan Basin, Hubei Province[J]. Geological Journal of China Universities, 2010, 16(3): 358-364(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201003010.htm [24] Boucot A J, Xu C, Scotese C R. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate[M]. Tulsa: Society of Economic Paleontologists and Mineralogists, 2013. [25] Scotese C R, Golonka J. Atlas of earth history[M]. Arlington: Department of Geology, University of Texas at Arlington. PALEOMAP Project, 2001. [26] Wilson I G. Ergs[J]. Sedimentary Geology, 1973, 10(2): 77-106. doi: 10.1016/0037-0738(73)90001-8 [27] 湖北省地质调查院. 建始县-宜昌市幅地质图(1: 25万)及说明书[Z]. 武汉: 湖北省地质调查院, 2005.Hubei Geological Survey Institute. 1: 250 000 Jianshi County-Yichang range geological map and manual[Z]. Wuhan: Hubei Geological Survey Institute, 2005(in Chinese). [28] 焦方正, 冯建辉, 易积正, 等. 中扬子地区海相天然气勘探方向、关键问题与勘探对策[J]. 中国石油勘探, 2015, 20(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201502001.htmJiao F Z, Feng J H, Yi J Z, et al. Direction, key factors and solution of marine natural gas exploration in Yangtze area[J]. China Petroleum Exploration, 2015, 20(2): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201502001.htm [29] 高键, 李英强, 何生, 等. 鄂西宜昌地区页岩气勘探发现对MVT铅锌矿成矿的指示意义[J]. 地球科学, 2021, 46(6): 2230-2245. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106020.htmGao J, Li Y Q, He S, et al. Exploration discovery of shale gas and its indicative significance to mineralization of MVT lead-zinc deposit in Yichang area, West Hubei[J]. Earth Science, 2021, 46(6): 2230-2245(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106020.htm [30] 李海, 白云山, 王保忠, 等. 湘鄂西地区下古生界页岩气保存条件[J]. 油气地质与采收率, 2014, 21(6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406005.htmLi H, Bai Y S, Wang B Z, et al. Preservation conditions research on shale gas in the Lower Paleozoic of western Hunan and Hubei area[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 22-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406005.htm [31] 沈传波, 梅廉夫, 刘昭茜, 等. 黄陵隆起中-新生代隆升作用的裂变径迹证据[J]. 矿物岩石, 2009, 29(2): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200902010.htmShen C B, Mei L F, Liu Z Q, et al. Apatite and zircon fission track data evidences for the Mesozoic-Cenozoic uplift of Huangling Dome, Central China[J]. Journal of Mineral and Petrology, 2009, 29(2): 54-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200902010.htm [32] 徐大良, 彭练红, 刘浩, 等. 黄陵背斜中新生代多期次隆升的构造-沉积响应[J]. 华南地质与矿产, 2013, 29(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htmXu D L, Peng L H, Liu H, et al. Meso-Cenozoic tectono-sedimentary response of multi-phased uplifts of Huangling Anticline, Central China[J]. Geology and Mineral Resources of South China, 2013, 29(2): 90-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm [33] 罗胜元, 陈孝红, 岳勇, 等. 中扬子宜昌地区沉积-构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008002.htmLuo S Y, Chen X H, Yue Y, et al. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze[J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008002.htm [34] 程龙, 李志宏, 阎春波, 等. 江汉盆地西缘宜昌地区下白垩统五龙组辫状河沉积特征[J]. 地层学杂志, 2018, 42(1): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201801011.htmCheng L, Li Z H, Yan C B, et al. Braided river deposits of the Lower Cretaceous Wulong Formation in the Yichang area of western Jianghan Basin[J]. Journal of Stratigraphy, 2018, 42(1): 90-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201801011.htm [35] 李杰, 黄宏业, 刘子杰, 等. 向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征[J]. 地质科技通报, 2021, 40(1): 90-99. doi: 10.19509/j.cnki.dzkq.2021.0011Li J, Huang H Y, Liu Z J, et al. In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 90-99(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0011 [36] Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. [37] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194. [38] Yu X, Liu C, Wang C, et al. Provenance of rift sediments in a composite basin-mountain system: Constraints from petrography, whole-rock geochemistry, and detrital zircon U-Pb geochronology of the Paleocene Shashi Formation, southwestern Jianghan Basin, Central China[J]. International Journal of Earth Sciences, 2018, 107(8): 2741-2766. [39] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan Orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1/2): 117-131. [40] 成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1976.The Team of north of Shaaxi of Chengdu College of Geology. Application analysis of grain size[M]. Beijing: Geological Publishing House, 1976(in Chinese). [41] 胡刚, 王乃昂, 高顺尉, 等. 花海湖泊全新世古风成砂的发现及其古环境解释[J]. 中国沙漠, 2002, 22(2): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200202012.htmHu G, Wang N A, Gao S W, et al. Discovery of Holoceneaeolian sand in Huahai Lake and its environmental significance[J]. Journal of Desert Research, 2002, 22(2): 63-69(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200202012.htm [42] 刘立安, 姜在兴. 四川盆地古近纪沙漠沉积特征及古风向意义[J]. 地质科技情报, 2011, 30(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102012.htmLiu L A, Jiang Z X. Depositional features of the desert in the Paleogene Sichuan Basin and the significance for the reconstruction of palaeowind direction[J]. Geological Science and Technology Information, 2011, 30(2): 63-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102012.htm [43] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. [44] 李超. 江汉盆地东部中生代沉积物碎屑云母组成、锆石LA-ICPMS定年及其物源示踪[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2005.Li C. The chemical composition of clastic white micas and the LA-ICPMS U-Pb dating of zircon for the Mesozoic sediments in the eastern Jianghan Basin, China, and its significance for their source[D]. Guangzhou: Graduate School of The Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2005(in Chinese with English abstract). [45] Shen C B, Mei L F, Peng L, et al. LA-ICPMS U-Pb zircon age constraints on the provenance of Cretaceous sediments in the Yichang area of the Jianghan Basin, Central China[J]. Cretaceous Research, 2012, 34: 172-183. [46] 江新胜, 李玉文. 中国中东部白垩纪沙漠的时空分布及其气候意义[J]. 岩相古地理, 1996, 16(2): 42-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD602.003.htmJiang X S, Li Y W. Spato-temporal distribution of the Cretaceous desert in central and eastern China and its climatic significance[J]. Sedimentary Facies and Palaeogeography, 1996, 16(2): 42-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD602.003.htm [47] 江新胜. 中国白垩纪沙漠及其古气候[D]. 成都: 成都理工大学, 2003.Jiang X S. Cretaceous desert in China and its paleoclimate[D]. Chengdu: Chengdu University of Technology, 2003 (in Chinese with English abstract). [48] 潘忠习, 江新胜, 傅清平. 四川盆地白垩纪沙漠沉积磁组构特征及其古风向意义[J]. 岩相古地理, 1999, 19(1): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.001.htmPan Z X, Jiang X S, Fu Q P. The magnetic fabrics and palaeowind direction significance of the Cretaceous desert sediments in the Sichuan Basin[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 12-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.001.htm [49] Wu C, Liu C, Yi H, et al. Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 529-544. [50] Li G, Wu C, Rodríguez-López J P, et al. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia[J]. Sedimentary Geology, 2018, 364: 121-140. [51] Hasegawa H, Imsamut S, Charusiri P, et al. 'Thailand was a desert' during the Mid-Cretaceous: Equatorward shift of the subtropical high-pressure belt indicated by eolian deposits (Phu Thok Formation) in the Khorat Basin, northeastern Thailand[J]. Island Arc, 2010, 19(4): 605-621. [52] 肖国桥, 张春霞, 郭正堂. 晚渐新世-早中新世青藏高原隆升与东亚季风演化[J]. 自然杂志, 2014, 36(3): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201403003.htmXiao G Q, Zhang C X, Guo Z T. Initiation of East Asian monsoon system related to Tibetan Plateau uplift from the Latest Oligocene to the Earliest Miocene[J]. Chinese Journal of Nature, 2014, 36(3): 165-169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201403003.htm [53] Liu X M, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4): 421-468. [54] Cen Y, Peng S B, Kusky T M, et al. Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling Group in the northern Huangling anticline[J]. Journal of Earth Science, 2012, 23(5): 648-658. [55] Jiao W F, Wu Y B, Yang S H, et al. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China: Earth Sciences, 2009, 52(9): 1393-1399. [56] Zhao J H, Zhou M F, Zheng J P. Neoproterozoic high-K granites produced by melting of newly formed mafic crust in the Huangling region, South China[J]. Precambrian Research, 2013, 233: 93-107. [57] Huang H Y, He D F, Li D, et al. Zircon U-Pb ages and Hf isotope analysis of Neoproterozoic Yaolinghe Group sedimentary rocks in the Chengkou area, South Qinling: Provenance and paleogeographic implications[J]. Precambrian Research, 2021, 355: 106088. [58] Ling W L, Duan R C, Liu X M, et al. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance[J]. Chinese Science Bulletin, 2010, 55(22): 2440-2448. [59] Qin J F, Lai S C, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling Orogen (Central China)[J]. Lithos, 2009, 112(3/4): 259-276. [60] Zhu X Y, Chen F K, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194-204. [61] Xiao B, Li Q, Liu S, et al. Highly fractionated Late Triassic Ⅰ-type granites and related molybdenum mineralization in the Qinling Orogenic Belt: Geochemical and U-Pb-Hf and Re-Os isotope constraints[J]. Ore Geology Reviews, 2014, 56: 220-233. [62] Wang R R, Xu Z Q, Santosh M, et al. Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes[J]. Tectonophysics, 2017, 712: 270-288. [63] Zhu X Y, Chen F K, Liu B X, et al. Geochemistry and zircon ages of mafic dikes in the South Qinling, Central China: Evidence for Late Neoproterozoic continental rifting in the northern Yangtze Block[J]. International Journal of Earth Sciences, 2015, 104(1): 27-44. [64] Zhao Z F, Zheng Y F, Wei C S, et al. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie Orogen in China[J]. Chemical Geology, 2008, 253(3/4): 222-242. [65] Wu Y B, Gao S, Zhang H F, et al. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks[J]. American Mineralogist, 2009, 94(2/3): 303-312. [66] Zhou L G, Xia Q X, Zheng Y F, et al. Multistage growth of garnet in ultrahigh-pressure eclogite during continental collision in the Dabie Orogen: Constrained by trace elements and U-Pb ages[J]. Lithos, 2011, 127(1/2): 101-127. [67] Chen L, Ma C Q, She Z B, et al. Petrogenesis and tectonic implications of A-type granites in the Dabie Orogenic Belt, China: Geochronological and geochemical constraints[J]. Geological Magazine, 2009, 146(5): 638-651. [68] Xu H J, Ma C Q, Zhang J F, et al. Early Cretaceous Low-Mg adakitic granites from the Dabie Orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust[J]. Gondwana Research, 2013, 23(1): 190-207. [69] Zhang C, Ma C Q, Holtz F. Origin of high-Mg adakitic magmatic enclaves from the Meichuan Pluton, southern Dabie Orogen (Central China): Implications for delamination of the lower continental crust and melt-mantle interaction[J]. Lithos, 2010, 119(3/4): 467-484. [70] Xue H M, Dong S W, Jian P. Zircon U-Pb SHRIMP ages of weakly to unmetamorphosed granitoids of the Yangtze basement outcrop in Dabieshan, Central China[J]. Journal of Asian Earth Sciences, 2006, 27(6): 779-787. [71] Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China: Evidence from zircon U-Pb age, trace element and Hf isotope composition[J]. Contributions to Mineralogy and Petrology, 2007, 155(1): 123-133. [72] Wu Y B, Lei N Z. Zircon U-Pb age, trace element, and Hf isotope evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal remnant in the Dabie Orogen[J]. Journal of Earth Science (Wuhan, China), 2008, 19(2): 110-134. [73] Xie Z, Gao T S, Chen J F. Multi-stage evolution of gneiss from North Dabie: Evidence from zircon U-Pb chronology[J]. Chinese Science Bulletin, 2004, 49(18): 1963-1969. [74] Yao J L, Shu L S, Santosh M, et al. Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constraining the assembly of Yangtze and Cathaysia Blocks in South China[J]. Journal of Asian Earth Sciences, 2013, 74: 225-243. [75] Yan C L, Shu L S, Santosh M, et al. The Precambrian tectonic evolution of the western Jiangnan Orogen and western Cathaysia Block: Evidence from detrital zircon age spectra and geochemistry of clastic rocks[J]. Precambrian Research, 2015, 268: 33-60. [76] Su J B, Dong S W, Zhang Y Q, et al. Detrital zircon geochronology of pre-Cretaceous strata: Tectonic implications for the Jiangnan Orogen, South China[J]. Geological Magazine, 2014, 151(6): 975-995. [77] Xu Y J, Xu Y S, Cawood P A, et al. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267: 63-72. [78] Sun W H, Zhou M F, Gao J F, et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 2009, 172(1/2): 99-126. [79] Wang L J, Griffin W L, Yu J H, et al. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution[J]. Gondwana Research, 2013, 23(4): 1261-1272. [80] Chen Q, Sun M, Long X, et al. Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction[J]. Precambrian Research, 2018, 309(S1): 271-289. [81] Xu Y, Luo Z, Huang X, et al. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3084-3104. [82] Wang Y J, Fan W M, Liang X Q, et al. SHRIMP zircon U-Pb geochronology of Indosinian granites in Hunan Province and its petrogenetic implications[J]. Chinese Science Bulletin, 2005, 50(13): 1395-1403. [83] 林清茶, 夏斌, 张玉泉. 川南德昌地区茨达碱性岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2006, 25(3): 398-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708013.htmLin Q C, Xia B, Zhang Y Q. Zircon SHRIMP U-Pb dating of the Cida alkali complex in the Dechang area, southern Sichuan, China[J]. Geological Bulletin of China, 2006, 25(3): 398-401(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708013.htm [84] 何梦颖, 郑洪波, 贾军涛. 长江现代沉积物碎屑锆石U-Pb年龄及Hf同位素组成与物源示踪研究[J]. 第四纪研究, 2013, 33(4): 656-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201304004.htmHe M Y, Zheng H B, Jia J T. Detrital zircon U-Pb dating and Hf isotope of modern sediments in the Yangtze River: Implication for the sediment provenance[J]. Quaternary Sciences, 2013, 33(4): 656-670(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201304004.htm [85] Qiu Y M, Gao S, Mcnaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze Craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 2000, 28(1): 11-14. [86] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006, 252(1/2): 56-71.