留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿渣类颗粒介质结构对力链发展规律的影响

陆敏凤 唐朝晖 柴波 宁可 祝洁雯 方熠

陆敏凤, 唐朝晖, 柴波, 宁可, 祝洁雯, 方熠. 矿渣类颗粒介质结构对力链发展规律的影响[J]. 地质科技通报, 2022, 41(4): 274-281. doi: 10.19509/j.cnki.dzkq.2022.0094
引用本文: 陆敏凤, 唐朝晖, 柴波, 宁可, 祝洁雯, 方熠. 矿渣类颗粒介质结构对力链发展规律的影响[J]. 地质科技通报, 2022, 41(4): 274-281. doi: 10.19509/j.cnki.dzkq.2022.0094
Lu Minfeng, Tang Zhaohui, Chai Bo, Ning Ke, Zhu Jiewen, Fang Yi. Granule structure influences on force chain development in the slag medium[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 274-281. doi: 10.19509/j.cnki.dzkq.2022.0094
Citation: Lu Minfeng, Tang Zhaohui, Chai Bo, Ning Ke, Zhu Jiewen, Fang Yi. Granule structure influences on force chain development in the slag medium[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 274-281. doi: 10.19509/j.cnki.dzkq.2022.0094

矿渣类颗粒介质结构对力链发展规律的影响

doi: 10.19509/j.cnki.dzkq.2022.0094
基金项目: 

国家自然科学基金项目 41877253

详细信息
    作者简介:

    陆敏凤(1996-), 女, 现正攻读土木工程专业硕士学位, 主要从事地质环境评价方面的研究工作。E-mail: 1984487477@qq.com

    通讯作者:

    唐朝晖(1964-), 女, 教授, 主要从事工程地质与环境岩土工程方面的教学科研工作。E-mail: zhtang@cug.edu.cn

  • 中图分类号: P642.2

Granule structure influences on force chain development in the slag medium

  • 摘要:

    矿业活动产生的渣体是不规则颗粒介质, 具有级配复杂、结构不稳定的特征, 颗粒间通过力链传递应力。以典型铜矿渣为研究对象, 借助CT扫描技术获得矿渣的颗粒结构形态, 通过开展不同粗颗粒含量的平面压缩试验和数值模拟试验, 得到宏观力学变形曲线及力链发展过程和颗粒结构变化, 讨论颗粒结构和力链发展协同作用对宏观力学性质的影响机制, 以及颗粒介质材料压缩发展规律。结果表明: 矿渣类颗粒介质材料的力链发展方向与压力方向一致; 矿渣宏观抗压性能随>5 mm粗颗粒含量的增加先增后减, 在最优粗细颗粒配比50%处达到最大抗压强度; 颗粒结构和力链间软硬结构存在显著的协同演化; 压缩过程中内部存在快速压密、颗粒破碎和稳定压缩3个阶段。在矿渣堆填过程中, 除控制其粗颗粒在最优级配外, 保持均匀填筑和合理的压实使其进入稳定压缩阶段也非常重要。

     

  • 图 1  铜矿渣样品颗粒级配曲线

    Figure 1.  Particle size distribution curve of copper slag sample

    图 2  CT扫描仪及放入CT扫描仪的铜矿渣样品

    Figure 2.  CT scanner and the scanning copper slag sample

    图 3  压缩试验设计图

    Figure 3.  Compression test design chart

    图 4  压缩试验安装图

    Figure 4.  Installation of compression test

    图 5  封注红色染料的脆性玻璃珠

    Figure 5.  Brittle glass beads sealed with red dye

    图 6  铜矿渣压缩参数标定初始模型图

    Figure 6.  Initial model diagram of parameter calibration for numerical compression test of copper slag

    图 7  获取铜矿渣颗粒结构形态

    球形度S=dn/dw(dn为颗粒最大内切圆直径; dw为颗粒最小外接圆直径);长宽比:F=dmax/dmin (dmax为颗粒最长直径;dmin为以dmax长轴且与颗粒面积相等的椭圆短轴);圆形度R=L/2(πA)1/2(L为颗粒投影周长;A为颗粒投影面积)

    Figure 7.  Approach to measuring structural morphology of copper slag particle

    图 8  压缩试验下不同w5铜矿渣应力-应变曲线图

    Figure 8.  Stress-strain curves of copper slags with different w5 contents under the compression test

    图 9  不同w5铜矿渣应变-时间曲线及各阶段每组玻璃珠破碎数量

    Figure 9.  Strain-time curves of copper slags with different mass fractions w5 and the broken number of glass beads in each group at each stage

    图 10  不同w5铜矿渣玻璃珠破碎顺序及位置图

    图中数字为破碎玻璃珠编号

    Figure 10.  Broken sequences and position diagrams of glass beads incopper slags with different w5 contents

    图 11  铜矿渣压缩室内试验和模拟试验应力-应变曲线图

    Figure 11.  Stress-strain curves of indoor compression and corresponding simulation testsof copper slag

    图 12  w5=50%时模拟试验的应力链发展趋势图

    Figure 12.  Evolution trend diagram of the stress chain in the simulation test when w5=50%

    图 13  不同粗颗粒质量分数含量控制下矿渣颗粒结构变化

    Figure 13.  Changes of the slag granule structure under the control of the coarse particle content

    图 14  不同w5铜矿渣玻璃珠第一颗破碎时间及总破碎率复合图

    Figure 14.  Composite diagram of the first crushing timings and total crushing rates of glass beads in copper slags with different w5 contents

    图 15  模拟过程颗粒变形破碎情况

    Figure 15.  Simulation of particle deformation and crushing under compression process

    表  1  铜矿渣的级配参数表

    Table  1.   Gradation parameter of copper slag

    名称 d10/mm d30/mm d60/mm Cu=d60/d10 Cc=d302/(d10d60) 平均粒径d50/mm 粗颗粒w5/%
    铜矿渣颗粒级配 0.47 1.27 3.84 8.17 0.89 2.98 30.15
    注:定义粒径>5 mm的颗粒为粗颗粒,粗颗粒质量分数用w5表示;d10为小于该粒径的土颗粒的质量占土颗粒总质量的10%,也称有效粒径;d30为小于该粒径的土颗粒的质量占土颗粒总质量的30%,也称连续粒径;d60为小于该粒径的土颗粒的质量占土颗粒总质量的60%,也称控制粒径
    下载: 导出CSV

    表  2  铜矿渣6组优势外形轮廓几何参数统计表

    Table  2.   Statistical table of geometric parameters of six groups of dominant profiles of copper slags

    分类 1 2 3 4 5 6
    优势外轮廓
    球形度S 0.29 0.60 0.65 0.52 0.69 0.33
    长宽比F 5.96 3.31 3.16 3.85 3.63 5.62
    圆形度R 1.22 1.10 1.02 1.07 1.08 1.05
    下载: 导出CSV

    表  3  铜矿渣大型压缩试验参数反演标定

    Table  3.   Parameter inversion calibration table for the large-scale compression test of copper slag

    参数类型 标定值
    颗粒密度ρ/(kg·m-3) 2 608
    接触颗粒间弹性模量Ec/Pa 2×107
    法向切向刚度比k 1.05
    接触摩擦系数μ 0.3
    平行黏结弹性模量Ep/Pa 6.5×107
    平行黏结刚度比kp 1.05
    平行黏结抗拉强度σc/Pa 0.9×107
    平行黏结内聚力c/Pa 4.5×107
    下载: 导出CSV
  • [1] Nyssen J, Vermeersch D. Slope aspect affects geomorphic dynamics of coal mining spoil heaps in Belgium[J]. Geomorphology, 2010, 123(1/2): 109-121.
    [2] Song Y S, Cho Y C, Hong S. Analyses on variations in the unsaturated characteristics of a mine waste-dump slope during rainfall[J]. Environmental Earth Sciences, 2016, 75(14): 1106-1118. doi: 10.1007/s12665-016-5877-x
    [3] Yin Y P, Li B, Wang W P, et al. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2016, 2(2): 176-216.
    [4] 唐朝晖, 柴波, 刘忠臣, 等. 填土边坡稳定性的可靠度分析[J]. 地球科学: 中国地质大学学报, 2013, 38(3): 616-624.

    Tang Z H, Chai B, Liu Z C, et al. Reliability analysis of stability of fill slope[J]. Earth Sciences: Journal of China University of Geosciences, 2013, 38(3): 616-624(in Chinese with English abstract).
    [5] 李宏达, 简文彬, 蔡泽宏, 等. 福建某排土场边坡降雨作用下渗流稳定时变分析[J]. 路基工程, 2016, 49(4): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201604011.htm

    Li H D, Jian W B, Cai Z H, et al. Time-dependent analysis on seepage stability of a refuse-dump slope under in Fujian[J]. Subgrade Engineering, 2016, 49(4): 33-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201604011.htm
    [6] Ebrahimian B, Noorzad A, Alsaleh M I. Modeling shear localization along granular soil-structure interfaces using elasto-plastic Cosserat continuum[J]. International Journal of Solids & Structures, 2012, 49(2): 257-278.
    [7] Marsal R J. Large scale testing of coarse grained materials[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93(2): 27-43. doi: 10.1061/JSFEAQ.0000958
    [8] 梁军, 刘汉龙, 高玉峰. 堆石蠕变机理分析与颗粒破碎特性研究[J]. 岩土力学, 2003, 24(3): 479-483. doi: 10.3969/j.issn.1000-7598.2003.03.032

    Liang J, Liu H L, Gao Y F. Creep mechanism and breakage of rockfill[J]. Rock and Soil Mechanics, 2003, 24(3): 479- 483(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2003.03.032
    [9] Zhu H, Nicot F, Darve F. Meso-structure organization in two-dimensional granular materials along biaxial loadingpath[J]. International Journal of Solids & Structures, 2016, 96(1): 25-37.
    [10] Caicedo B, Ocampo M, Vallejo L. Modelling comminution of granular materials using a linear packing model and Markovian processes[J]. Computers and Geotechnics, 2016, 80(12): 383-396.
    [11] Salim W, Indrararna B. A new elasto-plastic constitutive model for granular aggregates incorporating particle breakage[J]. Canadian Geotechnical Journal, 2004, 41(4): 657-671. doi: 10.1139/t04-025
    [12] 高政国, Shen H H. 基于颗粒组构特性的散体材料本构模型研究[J]. 岩土力学, 2009, 30(增刊1): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1019.htm

    Gao Z G, Shen H H. A study of constitutive model for granular materials based on characters of discrete particles arranged[J]. Rock and Soil Mechanics 2009, 30(S1): 93-98 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1019.htm
    [13] 杨光, 张丙印, 于玉贞, 等. 不同应力路径下粗粒料的颗粒破碎试验研究[J]. 水利学报, 2010, 41(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201003013.htm

    Yang G, Zhang B Y, Yu Y Z, et al. An experimental study on particle breakage of coarse-grainedmaterials under various stress paths[J]. Journal of Water Conservancy, 2010, 41(3): 338-342 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201003013.htm
    [14] Estrada N, Taboada A. Yield surfaces and plastic potentials of cemented granular materials from discrete elementsimulations[J]. Computers and Geotechnics, 2013, 49(4): 62-69.
    [15] Kim B S, Park S W, Kato S. DEM simulation of collapse behaviours of unsaturated granular materials under general stress states[J]. Computers and Geotechnics, 2012, 42(5): 52-61.
    [16] Tang H, Dong Y, Chu X, et al. The influence of particle rolling and imperfections on the formation of shear bands in granular material[J]. Granular Matter, 2016, 18(1): 12. doi: 10.1007/s10035-016-0607-3
    [17] 柴波, 陶阳阳, 杜娟, 等. 基于Hoek-Brown准则的节理岩体能量参数估算[J]. 地质科技通报, 2020, 39(1): 78-85. doi: 10.19509/j.cnki.dzkq.2020.0109

    Chai B, Tao Y Y, Du J, et al. Energetics parameter estimation of jointed rock mass based on Hoek-Brown failure criterion[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 78-85 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0109
    [18] 林成远, 唐辉明, 汪丁建, 等. 块石定向性特征对土-石混合体强度影响的数值模拟[J]. 地质科技通报, 2020, 39(5): 38-46. doi: 10.19509/j.cnki.dzkq.2020.0519

    Li C Y, Tang H M, Wang D J, et al. Influence on the strength of soil-rock mixture made by the rock block orientation features based on numerical experiment[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 38-46(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0519
    [19] 贾学明, 柴贺军, 郑颖人. 土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J]. 岩土力学, 2010, 31(9): 2695-2703. doi: 10.3969/j.issn.1000-7598.2010.09.002

    Jia X M, Chai H J, Zheng Y R. Mesomechanics research of large direct shear test of soil and aggregate mixture with particle flow code simulation[J]. Rock and Soil Mechanics, 2010, 31(9): 2695-2703(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.09.002
    [20] 肖柏林, 杨志强, 陈得信, 等. 充填骨料颗粒形态参数定量评价方法[J]. 天津大学学报: 自然科学与工程技术版, 2019, 52(5): 545-553. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201905013.htm

    Xiao B L, Yang Z Q, Chen D X, et al. Evaluation of the quantifying methods for shape characteristics of filling aggregate[J]. Journal of Tianjin University: Natural Science and Engineering Technology Edition, 2019, 52(5): 545-553 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201905013.htm
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  553
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回