Sources and evolution of ore-forming fluids from the Saxi tungsten-beryllium deposit in southeastern Yunnan Province: Evidence from fluid inclusions and H-O isotopes
-
摘要:
洒西钨铍矿床位于滇东南老君山钨锡多金属成矿区。确定早期似层状矿体和晚期脉状矿体的流体性质、来源和演化过程, 并对其流体地球化学和同位素进行约束, 可以有效探讨洒西钨铍矿床成矿机制, 为老君山矿集区下一步找矿工作提供理论思考。洒西钨铍矿床脉状矿体的形成经历了硅酸盐阶段、氧化物-硫化物阶段和碳酸盐-萤石阶段, 白钨矿和绿柱石主要形成于前两阶段。对洒西钨铍矿床脉状矿体不同阶段石英中的流体包裹体进行了岩相学特征、显微测温、激光拉曼光谱分析等研究, 并对早期似层状矿体和晚期脉状矿体矿石中石英的氢-氧同位素组成进行了测试。结果表明: 该矿床内脉状矿体的流体包裹体主要有富液相包裹体、富气相包裹体和含子矿物多相包裹体3种类型。流体包裹体的气相成分以H2O主, 含少量还原性气体如C2H2等, 液相成分也以H2O为主。从硅酸盐阶段到碳酸盐-萤石阶段, 包裹体的均一温度和盐度(NaCleq)峰值范围分别为240~360℃、2.35%~13.81%;220~310℃、4.03%~9.86%和190~270℃、2.41%~6.88%。从硅酸盐阶段到碳酸盐-萤石阶段, 成矿流体的温度呈现降低趋势, 盐度也呈降低趋势。成矿流体总体上属中-高温度、低盐度、贫CO2、含部分还原性气体的NaCl-H2O流体体系。早期似层状矿体石英样品
δ DV-SMOW值变化范围小, 为-102.8‰~-99.0‰,δ 18OV-SMOW值为11.7‰~13.0‰,δ 18OH2O值为3.16‰~6.46‰; 晚期脉状矿体氧化物-硫化物阶段石英样品δ DV-SMOW值变化范围较大, 为-99.6‰~-69.5‰,δ 18OV-SMOW值为11.2‰~14.1‰,δ 18OH2O值为3.08‰~6.73‰。综合表明成矿流体主要是岩浆水, 混合有少量大气降水或有机水, 流体可能发生了沸腾作用, 加之温度的降低, 导致晚期脉状矿体氧化物-硫化物阶段主要成矿物质的沉淀。洒西钨铍矿床属于中高温热液矿床。Abstract:The Saxi tungsten-beryllium deposit is located in the Laojunshan tungsten-tin polymetallic metallogenic area in southeastern Yunnan. Determining the fluid nature, source, and evolution process of early layered orebodies and late vein-like orebodies and constraining their fluid geochemistry and isotopes can effectively explore the metallogenic mechanism of the Saxi tungsten-beryllium deposit, which is a collection of Laojunshan deposits. This study provides theoretical thinking for future prospecting work in the district. The formation of vein-like ore bodies in this deposit experienced a silicate stage, an oxide-sulfide stage, and a carbonate-fluorite stage. Scheelite and beryl were mainly formed in the first two stages. This article studies the fluid inclusions in quartz at different stages of the orebodies of the Saxi tungsten-beryllium deposit, including petrographic characteristics, microscopic temperature measurements, and laser Raman spectroscopy. The quartz sample's hydrogen-oxygen isotope composition in the ore-like ore body was tested. Three primary types of fluid inclusions (FIs) in vein-like ore bodies are detected, i.e.: liquid-rich FIs, gas-rich FIs, and aughter minerals bearing FIs. The gas phase composition of FIs is mainly H2O, with a small amount of reducing gas such as C2H2, and the liquid phase composition is also mainly H2O. From the silicate stage to the carbonate-fluorite stage, the peak homogenization temperature and salinity (NaCleq) of FIs are 240-360℃, 2.35%-13.81%; 220-310℃, 4.03%-9.86%, and 190-270℃, 2.41%-6.88%. From early to late, both homogenization temperature and salinity of the ore-forming fluid decreased obviously. The ore-forming fluid is generally a medium temperature, low salinity, CO2-poor NaCl-H2O fluid system. The
δ D andδ 18O values of the quartz samples from early quasi-layered ore body are -102.8‰ to -99.0‰ and 11.7‰-13.0‰ respectively, and the correspondingδ 18O value of the H2O value is 3.16‰-6.46‰. Theδ D andδ 18O values of the quartz samplesfrom bulk oxide-sulfide section are -99.6‰ to -69.5‰ and 11.2‰-14.1‰ resoectively, and the correspondingδ 18O value of H2O value is 3.08‰-6.73‰. This indicates that the ore-forming fluid mainly sourced from magmatic water mixed with a small amount of atmospheric precipitation or organic water.The fluid may boil, forming the precipitation of the main ore-forming minerals in the late vein-like ore body oxide-sulfide stage. The Saxi tungsten-beryllium deposit belong to a medium-to high-temperature hydrothermal system.-
Key words:
- fluid inclusion /
- oxygen-hydrogen stable isotopes /
- Saxi deposit /
- southeastern Yunnan
-
图 1 云南麻栗坡南温河-洒西一带地质矿产略图[7]
Figure 1. Geological and mineral sketch in the Nanwenhe-Saxi area of Malipo County, Yunnan Province
图 2 洒西白钨矿矿区地质图[19]
Figure 2. Geological map of the Saxi tungsten deposit
图 3 坝子16线勘探线剖面图[7]
Figure 3. No.16 exploration profile map of the Bazi section
表 1 洒西钨铍矿床流体包裹体测温结果
Table 1. Microthermometic measurements and calculated parameters of fluid inclusions in the Saxi tungsten-beryllium deposit
成矿阶段 寄主
矿物个数 包裹体类型 大小/
μm气液比/
%均一温度/℃ 冰点温
度/℃盐度/% 峰值 平均值 硅酸盐阶段 石英 22 L-V 5~16 10~45 295~305 285 -7.1~-2.6 4.34~10.61 硅酸盐阶段 石英 8 L-V 3~10 15~60 285~294 284 -7.6~-2.1 3.55~11.22 硅酸盐阶段 石英 22 L-V,V 3~25 10~90 303~310 319 -9.3~-1.4 2.41~13.18 硅酸盐阶段 石英 3 L-V 4~7 15~20 381~389 376 -1.8~-1.4 2.41~3.06 硅酸盐阶段 石英 3 L-V 4~9 15~20 305~310 314 -2.5~-2.2 3.71~4.18 氧化物-硫化物阶段 石英 25 L-V 4~11 10~40 265~270 264 -6.4~-2.4 4.03~9.73 氧化物-硫化物阶段 石英 24 L-V 5~23 10~30 251~260 263 -6.5~-2.6 4.34~9.86 氧化物-硫化物阶段 石英 9 L-V 4~10 10~25 257~265 266 -4.3~-3.1 5.11~6.88 氧化物-硫化物阶段 石英 6 L-V 4~8 10~20 231~239 238 -5.6~-4.6 7.31~8.68 碳酸盐-萤石阶段 萤石 6 S-L-V,L-V 6~27 15~40 221~230 209 -4.0~-2.6 5.71~6.88 碳酸盐-萤石阶段 萤石 5 S-L-V,L-V 4~12 5~25 257~265 260 -4.3~-3.5 5.71~6.88 碳酸盐-萤石阶段 萤石 9 L-V 5~18 5~25 231~240 234 -3.1~-1.4 2.41~5.11 注:L-V.气液两相包裹体;S-L-V.含子矿物气液多相包裹体;V.气相包裹体 表 2 洒西钨铍矿床氢-氧同位素组成
Table 2. Oxygen and hydrogen isotopic data of the Saxi tungsten deposit
序号 样号 样品名称 矿物 δDV-SMOW/‰ δ18OV-SMOW/‰ T/℉ th/℃ δ18OH2O/‰ 1 SD-011 脉状矿石 石英 -69.5 14.1 560.15 287 6.73 2 SD-019 脉状矿石 石英 -91.2 13.8 564.15 291 6.58 3 SD-021(1) 似层状矿石 石英 -99.0 11.7 532.15 259 3.16 4 SD-038 脉状矿石 石英 -99.6 11.2 581.15 308 4.59 5 SD-042(1) 脉状矿石 石英 -84.4 11.8 528.15 255 3.08 6 SZ-2405-4 似层状矿石 石英 -102.8 13.0 583.15 310 6.46 -
[1] Cai Q R, Yan Y F, Yang G S. Genesis of the Nanyangtian scheelite deposit in southeastern Yunnan Province, China: Evidence from mineral chemistry, fluid inclusions, and C-O isotopes[J]. Acta Geochimica, 2018, 37(4): 614-631. doi: 10.1007/s11631-017-0257-0 [2] 冯佳睿, 周振华, 程彦博. 云南南秧田钨矿床流体包裹体特征及其意义[J]. 岩石矿物学杂志, 2010, 29(1): 50-58. doi: 10.3969/j.issn.1000-6524.2010.01.006Feng J R, Zhou Z H, Chen Y B. Characteristics and significance of fluid inclusions in Nanyangtian tungsten deposit, Yunnan[J]. Acta Petrologica et Mineralogica, 2010, 29(1): 50-58(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2010.01.006 [3] 冯佳睿, 毛景文, 裴荣富, 等. 滇东南老君山南秧田钨矿床的成矿流体和成矿作用[J]. 矿床地质, 2011, 30(3): 403-419. doi: 10.3969/j.issn.0258-7106.2011.03.003Feng J R, Mao J W, Pei R F, et al. Ore-forming fluids and mineralization of the tungsten deposit in Nanyangtian, Laojun Mountain, Southeast Yunnan[J]. Mineral Deposits, 2011, 30(3): 403-419(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.03.003 [4] 徐建珍. 云南省麻栗坡县沟秧何矿区似层状钨矿床成因探讨[D]. 北京: 中国地质大学(北京), 2012.Xu J Z, Discussion on the genesis of quasi-layered tungsten deposit in Gouyanghe mining area, Malipo County, Yunnan[D]. Beijing: China University of Geosciences(Beijing), 2012(in Chinese with English abstract). [5] 石洪召, 张林奎, 任光明, 等. 云南麻栗坡南秧田白钨矿床层控似矽卡岩成因探讨[J]. 中国地质, 2011, 38(3): 673-680. doi: 10.3969/j.issn.1000-3657.2011.03.015Shi H Z, Zhang L K, Ren G M, et al. Discussion on the genesis of skarn-like stratigraphy of the scheelite deposit in Nanyangtian, Malipo, Yunnan[J]. Geology in China, 2011, 38(3): 673-680(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.03.015 [6] 张彬, 张斌辉, 张林奎, 等. 滇东南老君山矿集区洒西钨矿床流体包裹体特征及其地质意义[J]. 华南地质与矿产, 2016, 32(4), 333-342. doi: 10.3969/j.issn.1007-3701.2016.04.002Zhang B, Zhang B H, Zhang L K, et al. Characteristics of ore-forming fluids of the Saxi scheelite deposit, Laojunshan ore concentrated area in Southeast Yunnan Province, and its geological significance[J]. Geology and Mineral Resources of South China, 2016, 32(4): 333-342(in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2016.04.002 [7] 阙朝阳, 张达, 狄永军, 等. 滇东南麻栗坡南温河-洒西一带钨矿控矿要素及深部找矿突破[J]. 地学前缘, 2014, 21(2): 286-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402025.htmQue C Y, Zhang D, Di Y J, et al. Ore-controlling characteristics of tungsten deposits in the Nanwenhe-Saxi area and deep prospecting breakthrough[J]. Earth Science Frontiers, 2014, 21(2): 286-300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402025.htm [8] 曹华文, 张寿庭, 林进展, 等. 滇东南与滇西锡成矿带的区域地质背景和成矿特征对比[J]. 地质科技情报, 2014, 33(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401026.htmCao H W, Zhang S T, Lin J Z, et al. Regional geological settings and the contrast of metallogenic characteristics of the southeast and west Yunnan tin metallogenic belts[J]. Geological Science and Technology Informatiaon, 2014, 33(1): 163-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401026.htm [9] 刘玉平, 李朝阳, 谷团, 等. 滇东南老君山中-深变质岩系铅同位素特征及时代归属[J]. 矿物学报, 2000, 20(3): 228-232. doi: 10.3321/j.issn:1000-4734.2000.03.004Liu Y P, Li C Y, Gu T, et al. Lead isotopic characteristics and age attribution of the middle-deep metamorphic rock series in Laojun Mountain, southeastern Yunnan[J]. Acta Mineralogica Sinica, 2000, 20(3): 228-232(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2000.03.004 [10] 张彬, 张林奎, 石洪召, 等. 滇东南洒西白钨矿床稀土元素地球化学特征及其成因指示意义[J]. 华南地质与矿产, 2012, 28(3): 232-236. doi: 10.3969/j.issn.1007-3701.2012.03.007Zhang B, Zhang L K, Shi H Z, et al. Geochemical characteristics of rare earth elements in the Saxi scheelite deposit in southeastern Yunnan and their genetic indications[J]. Geology and Mineral Resources of South China, 2012, 28(3): 232-236(in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2012.03.007 [11] 冯明刚, 张世涛, 吕伟. 中国祖母绿矿床特征及其找矿方向[J]. 云南地质, 2000, 19(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200001004.htmFeng M G, Zhang S T, Lü W. Characteristics of emerald deposits in China and its prospecting direction[J]. Yunnan Geology, 2000, 19(1): 37-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200001004.htm [12] 张斌辉, 丁俊, 任光明, 等. 云南马关老君山花岗岩的年代学、地球化学特征及地质意义[J]. 地质学报, 2012, 86(4): 587-602. doi: 10.3969/j.issn.0001-5717.2012.04.005Zhang B H, Ding J, Ren G M, et al. Chronological, geochemical characteristics and geological significance of Laojunshan granite in Maguan, Yunnan[J]. Acta Geologica Sinica, 2012, 86(4): 587-602(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.04.005 [13] 刘玉平, 李正祥, 李惠民, 等. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件[J]. 岩石学报, 2007, 23(5): 967-976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705011.htmLiu Y P, Li Z X, Li H M, et al. U-Pb geochronology of cassiterite and zircon in Dulong tin-zinc deposit: Cretaceous large-scale granite diagenesis and mineralization event in southeastern Yunnan[J]. Acta Petrologica Sinica, 2007, 23(5): 967-976(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705011.htm [14] 刘艳宾, 莫宣学, 张达, 等. 滇东南老君山地区晚白垩世花岗岩的成因[J]. 岩石学报, 2014, 30(11): 3271-3286. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411013.htmLiu Y B, Mo X X, Zhang D, et al. Origin of Late Cretaceousgranite in Laojunshan area, southeastern Yunnan[J]. Acta Petrologica Sinica, 2014, 30(11): 3271-3286(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411013.htm [15] 马慧慧. 滇东南老君山花岗岩岩石学与地球化学特征及其构造意义[D]. 北京: 中国地质大学(北京), 2013.Ma H H. Petrological and geochemical characteristics of Laojunshan granite in southeast Yunnan and its tectonic significance[D]. Beijing: China University of Geosciences(Beijing). 2013(in Chinese with English abstract). [16] Mao J W, Xie G Q, Guo C L, et al. Mesozoic large scale mineralization and multiple lithosphere extension in South China[J]. Acta Geologica Sinica: English Edition, 2006, 80(3): 420-431. doi: 10.3321/j.issn:1000-9515.2006.03.009 [17] 欧阳永棚, 夏庆霖, 桑浩, 等, 云南文山官房钨矿床地质特征及其稀土-微量元素地球化学[J]. 地质科技情报, 2013, 32(3): 152-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303024.htmOuyang Y P, Xia Q L, San H, et al. Geological characteristics and REE-trace element geochemistry of Guanfang tungsten deposit in Wenshan, Yunnan Province, China[J]. Geological Science and Technology Informatiaon, 2013, 32(3): 152-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303024.htm [18] 毕珉峰, 张达, 吴淦国, 等. 滇东南麻栗坡一带中生代构造变形及其对钨多金属矿产的控制作用[J]. 地学前缘, 2015, 22(4): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504026.htmBi M F, Zhang D, Wu G G, et al. Mesozoic structural deformation in Malipo, southeastern Yunnan and its control on tungsten polymetallic minerals[J]. Earth Science Frontiers, 2015, 22(4): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504026.htm [19] 紫金矿业集团股份有限公司. 云南省麻栗坡县坝子钨矿储量核实报告[R]. 昆明: 紫金矿业集团股份有限公司, 2009.Zijin Mining Group Co. Ltd. . Report on verification of reserves of Bazi tungsten mine in Malipo County, Yunnan Province[R]. Kunming: Zijin Mining Group Co., Ltd., 2009(in Chinese). [20] Coleman M L, Sheppard T J, Durham J J, et al. Reduction of water with zinc for hydrogen isotope analysis[J]. Analytical Chemistry, 1982, 54: 993-995. [21] Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27(1): 43-52. [22] Friedman I, O'Neil J R. Complication of stable isotope fractionation factors of geochemical interest[C]//Fleischer M. Data of geochemistry. Washington: United States Government Printing Office, 1977: 1-12. [23] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004.Lu H Z, Fan H R, Ni Pei, et al. Fluid inclusion[M]. Beijing: Science Press, 2004(in Chinese). [24] Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77: 3057-3067. [25] Hoefs J. Stable isotope geochemistry[M]. 4th Edition, Berlin: Springer Verlag, 1997. [26] Pirajno F. Hydrothermal processes and mineral system[M]. Berlin: Springer, 2009. [27] Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69: 843-883. [28] Shmulovich K I, Landwehr D, Simon K, et al. Stable isotope fractionation between liquid and vapour in water-salt systems up to 600℃[J]. Chem. Geol., 1999, 157: 343-354. [29] Driesner T, Seward T M. Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquidvapor fractionation for 4-5 molal aqueous NaCl and KCl solutions to 400℃[J]. Geochimca Cosmochimca et Acta, 2000, 64: 1773-1784. [30] 程彦博, 童祥, 武俊德, 等. 华南西部地区晚中生代与W-Sn矿有关花岗岩的年代学格架及地质意义[J]. 岩石学报, 2010, 26(3): 809-818. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003014.htmChen Y B, Tong X, Wu J D, et al. Geochronology framework of the W-Sn mineralization granites in western South China and their geological Signicance[J]. Acta Petrologica Sinica, 2010, 26(3): 809-818(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003014.htm [31] 刘玉平, 李正祥, 叶霖, 等. 滇东南老君山矿集区钨成矿作用Ar-Ar年代学[J]. 矿物学报, 2011, 31(增刊1): 617-618. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1320.htmLiu Y P, Li Z X, Ye L, et al. Ar-Ar chronology of tungsten mineralization in Laojunshan ore concentration area, Southeast Yunnan[J]. Acta Mineralogica Sinica, 2011, 31(S1): 617-618(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1320.htm [32] Xue G, Marshall D, Zhang S, et al. Conditions for Early Cretaceous emerald formation at Dyakou, China: Fluid inclusion, Ar-Ar, and stable isotope studies[J]. Economic Geology, 2010, 105: 339-349. [33] 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htmMao J W, Xie G Q, Guo C L, et al. Large-scale tungsten-tin polymetallic mineralization in Nanling area: Mineralization time limit and geodynamic background[J]. Acta Petrologica Sinica, 2007, 23(10): 2329-2338(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htm [34] Hua R M, Chen P R, Zhang W L, et al. Metallogenesis related to Mesozoic granitoids in the Nanling Range, South China and their geodynamic settings[J]. Bulletin of the Geological Society of China, 2005, 79(6): 810-820. [35] 华仁民, 毛景文. 试论中国东部中生代成矿大爆发[J]. 矿床地质, 1999, 18(4): 300-308. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199904001.htmHua R M, Mao J W. On the Mesozoic metallogenic outburst in eastern China[J]. Mineral Deposits, 1999, 18(4): 300-308(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199904001.htm [36] 李建康, 王登红, 李华芹, 等. 云南老君山矿集区的晚侏罗世-早白垩世成矿事件[J]. 地球科学: 中国地质大学学报, 2013, 38(5), 1023-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305014.htmLi J K, Wang D H, Li H Q, et al. Late Jurassic-Early Cretaceous mineralization events in Laojunshan ore concentration area in Yunnan[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(5): 1023-1036(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305014.htm [37] 张东亮, 彭建堂, 符亚洲, 等. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学[J]. 岩石学报, 2012, 28(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201008.htmZhang D L, Peng J T, Fu Y Z, et al. Rare earth element geochemistry of calcium-bearing minerals in the Xianghuapu tungsten deposit, Hunan[J]. Acta Petrologica Sinica, 2012, 28(1): 65-74(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201008.htm [38] 刘英俊, 马东升. 钨的地球化学[M]. 北京: 科学出版社, 1987.Liu Y J, Ma D S. Geochemistry of tungsten[M]. Beijing: Science Press, 1987(in Chinese). [39] 吴胜华, 王旭东, 熊必康. 江西香炉山矽卡岩型钨矿床流体包裹体研究[J]. 岩石学报, 2014, 30(1): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401013.htmWu S H, Wang X D, Xiong B K. Research onfluid inclusions of Xianglushan skarn tungsten deposit in Jiangxi[J]. Acta Petrologica Sinica, 2014, 30(1): 178-188(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401013.htm [40] 龙政宇, 余晓艳, 郑育宇, 等. 云南大丫口祖母绿矿床中电气石的地球化学特征及其对成矿的指示意义[J]. 地学前缘, 2021, 28(2): 333-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102025.htmLong Z Y, Yu X Y, Zheng Y Y, et al. Geochemical characteristics of tourmaline in the Dayakou emerald deposit in Yunnan and its indications for mineralization[J]. Earth Science Frontiers, 2021, 28(2): 333-347(in Chinese with English abstract https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102025.htm [41] Zheng Y Y, Yu X Y, Guo H S. Major and trace element geochemistry of Dayakou vanadium-dominant emerald from Malipo (Yunnan, China): Genetic model and geographic origin determination[J]. Minerals, 2019, 9(12): 777.