留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碎屑岩系不同沉积体系的沉积正演方法综述

万力 黄秀 张志杰 袁选俊 陈星渝

万力, 黄秀, 张志杰, 袁选俊, 陈星渝. 碎屑岩系不同沉积体系的沉积正演方法综述[J]. 地质科技通报, 2023, 42(3): 153-162. doi: 10.19509/j.cnki.dzkq.2022.0105
引用本文: 万力, 黄秀, 张志杰, 袁选俊, 陈星渝. 碎屑岩系不同沉积体系的沉积正演方法综述[J]. 地质科技通报, 2023, 42(3): 153-162. doi: 10.19509/j.cnki.dzkq.2022.0105
Wan Li, Huang Xiu, Zhang Zhijie, Yuan Xuanjun, Chen Xingyu. A review of sedimentary forward modeling methods for different sedimentary systems of clastic rock series[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 153-162. doi: 10.19509/j.cnki.dzkq.2022.0105
Citation: Wan Li, Huang Xiu, Zhang Zhijie, Yuan Xuanjun, Chen Xingyu. A review of sedimentary forward modeling methods for different sedimentary systems of clastic rock series[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 153-162. doi: 10.19509/j.cnki.dzkq.2022.0105

碎屑岩系不同沉积体系的沉积正演方法综述

doi: 10.19509/j.cnki.dzkq.2022.0105
详细信息
    通讯作者:

    万力(1989—), 女, 现在博士后流动站从事沉积正演研究工作。E-mail: wanli.ada@outlook.com

  • 中图分类号: P588.21

A review of sedimentary forward modeling methods for different sedimentary systems of clastic rock series

  • 摘要:

    随着沉积学研究向定量化、过程化、体系化发展,沉积正演日益受到重视。首先阐述了目前沉积正演的主要输入和输出数据,梳理了输入参数的确立方法。随后综述了沉积正演分类的方法,分类原则包括模拟原理、模拟过程数量、模拟结果类型、模拟维度、模拟尺度、忠实数据程度、是否包含源-汇系统的源区等。然后介绍了不同碎屑岩系沉积体系的沉积正演方法,包括山坡地形、河流和深水水道、三角洲、朵体和滑坡。通过介绍各个体系的某一典型模拟程序,说明这一体系需要重点模拟的沉积特征及其对应的模拟原理,并尽量涵盖多种模拟方法,扩宽对于沉积正演的认识。最后对沉积正演的发展进行了展望,认为其将向三维可视化、多过程融合、多学科融合方向发展,并建议加强计算机、数学、力学、地学的复合人才培养;加强沉积正演假想实验研究来研究沉积理论;尝试多种模拟方法;以及由应用为主转向以研发为主。

     

  • 图 1  SIGNUM模拟山川地形演化(改自文献[22])

    Figure 1.  Evolvement of landscape simulated with SIGNUM

    图 2  深水河道迁移模拟(改自文献[21])

    A.10时间步长时的地表形态;B.90时间步长时的基底地表形态;C.10时间步长时的基底形态;D.90时间步长时的基底形态;E.水道-天然堤复合体剖面。蓝色为低地势;绿色为高地势

    Figure 2.  Migration simulation of deep water channel

    图 3  Delta-RCM模拟高含砂率与低含砂率三角洲演化(改自文献[26])

    A.含砂率25% 200 d时的三角洲沉积;B.含砂率75% 200 d时的三角洲沉积;C.含砂率25% 1 000 d时的三角洲沉积;D.含砂率25% 1 000 d时的三角洲沉积。蓝色为高水流量区域;白色为低水流量区域

    Figure 3.  Evolvement of delta with high and low percent sand simulated with Delta-RCM

    图 4  朵体迁移演化(改自文献[28])

    A.多个形态相似的朵体叠加在一起;B.横切物源剖面图;C.基本的扇体形态;D.加入随机扰动后的扇体形态

    Figure 4.  Migration simulation of lobe migration

    图 5  FLOW-R预测的滑坡区域(改自文献[30])

    A.底形;B.人工定义的易滑坡区域;C.Flow-R自动识别的易滑坡区域。红线标记的为沉积区;蓝线标记的为侵蚀区

    Figure 5.  Prediction of landslide regions for debris flow by FLOW-R

    表  1  沉积正演方法分类

    Table  1.   Classification of sedimentary forward modeling

    分类原则 类型 基本特征 范例
    模拟原理 水动力型 基于水力学和泥沙动力学 Sedsim
    扩散型 基于扩散规律 Dionisos
    几何规律型 基于沉积体几何规律 SEDPAK
    模拟过程数量 单模块 单一沉积过程 Delta-RCM
    多模块 多个沉积过程 Dionisos
    模拟结果类型 分析类 模拟单一特征 Hall等[15]
    建模类 重建沉积体系 Dionisos
    忠实数据程度 基于栅格类 地质统计学建模 Petrel
    基于对象类 地质统计学与沉积规律共同控制 Petrel
    基于规则类 沉积规律控制 Pyrcz等[16]
    基于过程类 沉积过程物理规律控制 Sedsim
    模拟维度 二维正演 剖面或平面随时间演化 SEDPAK
    三维正演 三维沉积体随时间演化 Dionisos
    模拟尺度 事件级别 0.1~10 a Flow-3D
    储层级别 1~10 ka Pyrcz等[16]
    盆地级别 >100 ka Badland
    源-汇研究思路 完整源-汇区系统型 模拟源区侵蚀,恢复沉积物通量 Badland
    只模拟汇区型 只模拟沉积区,沉积物通量需要人工设定 Delta-RCM
    下载: 导出CSV

    表  2  各个沉积体系沉积正演方法

    Table  2.   Sedimentary forward modeling for different sedimentary systems

    模拟方法 模拟对象 关键特征 模拟程序 模拟结果 是否开源 研究单位 相关文献
    河网提取与水流能量公式 山坡地形 树杈状河网和溯源侵蚀 SIGNUM 地貌高程随时间演化 开源 意大利国家研究委员会 文献[22-23]
    中线迁移公式和剖面形态模拟 曲流河与深水水道 中线摆动迁移和截弯取直 文献[21] 河道水道随时间从直线型变为高弯度型 非开源 壳牌石油公司 文献[21, 24-25]
    加权统计和简化流体泥沙动力学 三角洲 分支河道与鸟足状、朵状形态 Delta-RCM 水流量、岩性与高程随时间的演化 开源 美国明尼苏达大学 文献[26-27]
    随机建模和朵体几何形态模拟 朵体 朵体迁移叠加 文献[16] 朵体叠加后形成的复合体 非开源 雪弗龙石油公司 文献[16, 28]
    失稳概率评估和半经验公式 滑坡 条带状侵蚀区与朵状沉积区 Flow-R 滑坡体分布预测 开源 瑞士洛桑大学 文献[29-31]
    下载: 导出CSV
  • [1] Burgess P M, Roberts D, Bally A. A brief review of developments in stratigraphic forward modelling, 2000-2009[J]. Regional Geology and Tectonics: Principles of Geologic Analysis, 2012, 1: 379-404. http://www.sciencedirect.com/science/article/pii/B9780444530424000145
    [2] Paola C. Quantitative models of sedimentary basin filling[J]. Sedimentology, 2000, 47: 121-178. doi: 10.1046/j.1365-3091.2000.00006.x
    [3] Potter P E, Pettijohn F J. Paleocurrents and basin analysis (1963-1976)[M]. New York: Springer, 1977.
    [4] Pettijohn F J. Sedimentary rocks[M]. New York: Harper & Row, 1975.
    [5] Schlee J. Upland gravels of southern Maryland[J]. Geological Society of America Bulletin, 1957, 68(10): 1371-410. doi: 10.1130/0016-7606(1957)68[1371:UGOSM]2.0.CO;2
    [6] Sloss L. Stratigraphic models in exploration[J]. AAPG Bulletin, 1962, 46(7): 1050. http://archives.datapages.com/data/meta/sepm/journals/v01-32/data/032/032003/pdfs/0415_firstpage.pdf
    [7] Harbaugh J W, Bonham-Carter G. Computer simulation in geology[M]. [S. l. ]: Stanford Univ. Calif., 1970.
    [8] Allen J R. Physical processes of sedimentation[M]. New York: American Elsevier Pub. Co., 1970.
    [9] Pitman Iii W C. Relationship between eustacy and stratigraphic sequences of passive margins[J]. Geological Society of America Bulletin, 1978, 89(9): 1389-1403. doi: 10.1130/0016-7606(1978)89<1389:RBEASS>2.0.CO;2
    [10] Jordan T E. Thrust loads and foreland basin evolution, Cretaceous, Western United States[J]. AAPG Bulletin, 1981, 65(12): 2506-2520. http://terra.rice.edu/department/faculty/morganj/ESCI536/Readings/sevier/Jordan-AAPGBull1981.pdf
    [11] Tetzlaff D M, Harbaugh J W. Simulating clastic sedimentation[M]. New York: Springer, 1989.
    [12] Strobel J, Cannon R, Christopher G S, et al. Interactive (Sedpak) simulation of clastic and carbonate sediments in shelf to basin settings[J]. Computers & Geosciences, 1989, 15(8): 1279-1290. http://www.onacademic.com/detail/journal_1000034998432410_b42b.html
    [13] Granjeon D, Joseph P. Concepts and applications of a 3-D multiple lithology, diffusive model in stratigraphic modeling[C]//Harbaugh J W, Watney W L, Rankey E C, et al. Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. [S. l. ]: [s. n. ], 1999: 197-210.
    [14] Syvitski J P, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1-19. doi: 10.1086/509246
    [15] Hall B, Meiburg E, Kneller B. Channel formation by turbidity currents: Navier-stokes-based linear stability analysis[J]. Journal of Fluid Mechanics, 2008, 615: 185-210. doi: 10.1017/S0022112008003467
    [16] Pyrcz M J, Catuneanu O, Deutsch C V. Stochastic surface-based modeling of turbidite lobes[J]. AAPG Bulletin, 2005, 89(2): 177-191. doi: 10.1306/09220403112
    [17] Salles T, Duclaux G. Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling[J]. Earth Surface Processes and Landforms, 2015, 40(6): 823-839. doi: 10.1002/esp.3674
    [18] Pyrcz M J, Sech R P, Covault J A, et al. Stratigraphic rule-based reservoir modeling[J]. Bulletin of Canadian Petroleum Geology, 2015, 63(4): 287-303. doi: 10.2113/gscpgbull.63.4.287
    [19] 杜威, 纪友亮, 李其海, 等. 不同沉积过程尺度下正演数值模拟研究进展及油气地质意义[J]. 油气地质与采收率, 2020, 27(2): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002009.htm

    Du W, Ji Y L, Li Q H, et al. Sedimentary forward numerical modeling at different sedimentary scales: Progress and hydrocarbon significance[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 62-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002009.htm
    [20] Li J, Liu P, Sun S, et al. Sedapp V2021: A nonlinear diffusion-based forward stratigraphic model for shallow marine environments[J]. Geoscientific Model Development, 2021, 14(8): 4925-4937. doi: 10.5194/gmd-14-4925-2021
    [21] Sylvester Z, Pirmez C, Cantelli A. A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture[J]. Marine and Petroleum Geology, 2011, 28(3): 716-727. doi: 10.1016/j.marpetgeo.2010.05.012
    [22] Refice A, Giachetta E, Capolongo D. Signum: A Matlab, TIN-based landscape evolution model[J]. Computers & Geosciences, 2012, 45: 293-303. http://www.researchgate.net/profile/Domenico_Capolongo/publication/220027603_SIGNUM_A_Matlab_TIN-based_landscape_evolution_model/links/00b4951a098c5d0a2f000000.pdf?ev=pub_ext_doc_dl_meta
    [23] 杨蓉. 几种地形演化的数值模拟模型简述[J]. 地震地质, 2017, 39(6): 1173-1184. doi: 10.3969/j.issn.0253-4967.2017.06.006

    Yang R. A brief review of several models of topographic evolution[J]. Seismology and Geology, 2017, 39(6): 1173-1184(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2017.06.006
    [24] Yi A. Modeling of flow and migration of subaerial and submarine meandering channels[D]. [S. l. ]: University of South Carolina, 2006.
    [25] 舒晓, 金宝强, 缪飞飞, 等. 基于曲流河演化模拟的海上大井距油田点坝内部构型建模方法[J]. 复杂油气藏, 2019, 12(1): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201901008.htm

    Shu X, Jin B Q, Miao F F, et al. Internal architecture modeling of point bar in offshore oilfields with large well-spacing based on evolution simulation of meandering river[J]. Complex Hydrocarbon Reservoirs, 2019, 12(1): 38-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201901008.htm
    [26] Liang M, Voller V, Paola C. A reduced-complexity model for river delta formation: Part 1. Modeling deltas with channel dynamics[J]. Earth Surface Dynamics, 2015, 3(1): 67-86. doi: 10.5194/esurf-3-67-2015
    [27] Liang M, Geleynse N, Edmonds D, et al. A reduced-complexity model for river delta formation: Part 2. Assessment of the flow routing scheme[J]. Earth Surface Dynamics, 2015, 3(1): 87-104. doi: 10.5194/esurf-3-87-2015
    [28] Bertoncello A, Sun T, Li H, et al. Conditioning surface-based geological models to well and thickness data[J]. Mathematical Geosciences, 2013, 45(7): 873-893. doi: 10.1007/s11004-013-9455-4
    [29] Horton P, Jaboyedoff M, Rudaz B E, et al. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale[J]. Natural Hazards and Earth System Sciences, 2013, 13(4): 869-885. doi: 10.5194/nhess-13-869-2013
    [30] Miura H. Fusion analysis of optical satellite images and digital elevation model for quantifying volume in debris flow disaster[J]. Remote Sensing, 2019, 11(9): 1096. doi: 10.3390/rs11091096
    [31] Rickenmann D. Empirical relationships for debris flows[J]. Natural Hazards, 1999, 19(1): 47-77. doi: 10.1023/A:1008064220727
    [32] 刘泽, 李三忠, Bukhari S W H, 等. 动态古地貌再造: Badlands软件在盆地分析中的应用[J]. 古地理学报, 2020, 22(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001002.htm

    Liu Z, Li S Z, Bukhari S W H, et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis[J]. Journal of Palaeogeography: Chinese Edition, 2020, 22(1): 29-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001002.htm
    [33] 李少华, 刘显太, 王军, 等. 基于沉积过程建模算法Alluvsim的改进[J]. 石油学报, 2013, 34(1): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301016.htm

    Li S H, Liu X T, Wang J, et al. Improvement of the alluvsim algorithm modeling based on depositional processes[J]. Acta Petrolei Sinica, 2013, 34(1): 140-144(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301016.htm
    [34] 黄秀, 刘可禹, 邹才能, 等. 鄱阳湖浅水三角洲沉积体系三维定量正演模拟[J]. 地球科学: 中国地质大学学报, 2013, 38(5): 1005-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305012.htm

    Huang X, Liu K Y, Zou C N, et al. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang Lake, southern China[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(5): 1005-1013(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305012.htm
    [35] Ikeda S, Parker G, Sawai K. Bend theory of river meanders: Part 1. Linear development[J]. Journal of Fluid Mechanics, 1981, 112: 363-377. http://www.onacademic.com/detail/journal_1000035831603110_01e4.html
    [36] 冯文杰, 吴胜和, 张可, 等. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示[J]. 地质学报, 2017, 91(9): 2047-2064. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201709009.htm

    Feng W J, Wu S H, Zhang K, et al. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition[J]. Acta Geologica Sinica, 2017, 91(9): 2047-2064 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201709009.htm
    [37] 贺婷婷, 谈心, 段太忠, 等. 综合沉积正演与多点地质统计模拟辫状河三角洲: 以塔河T区为例[J]. 地质科技通报, 2021, 40(3): 54-66. doi: 10.19509/j.cnki.dzkq.2021.0301

    He T T, Tan X, Duan T Z, et al. Integrated sedimentary forward modeling and multipoint geostatistics in braided river delta simulation: A case from Block T of Tahe Oilfield[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 54-66(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0301
    [38] 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm

    Zhang W B, Duang T Z, Liu Y F, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 264-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm
    [39] 谷宇峰, 张道勇, 鲍志东, 等. 利用GS-LightGBM机器学习模型识别致密砂岩地层岩性[J]. 地质科技通报, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416

    Gu Y F, Zhang D Y, Bao Z D, et al. Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 224-234(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0416
    [40] Harris A D, Baumgardner S E, Sun T, et al. A poor relationship between sea level and deep-water sand delivery[J]. Sedimentary Geology, 2018, 370: 42-51. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0037073818300939&originContentFamily=serial&_origin=article&_ts=1523590335&md5=6aa41c84fc003cd7198367dbe56d0254
    [41] Zhang J, Kim W, Olariu C, et al. Accommodation-versus supply-dominated systems for sediment partitioning to deep water[J]. Geology, 2019, 47(5): 419-422. http://www.researchgate.net/publication/331657015_Accommodation-_versus_supply-dominated_systems_for_sediment_partitioning_to_deep_water
    [42] 高抒. 海洋沉积地质过程模拟: 性质与问题及前景[J]. 海洋地质与第四纪地质, 2011, 31(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105003.htm

    Gao S. Numerical modeling of marine sedimentary processes: The nature, scientific problems, and prospect[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105003.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  639
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13

目录

    /

    返回文章
    返回