A preliminary study on the formation conditions and weathering leaching enrichment mechanism of secondary phosphorite in the Xinhua phosphate mining area, Zhijin, Guizhou
-
摘要:
贵州织金新华磷矿是我国西南地区著名的超大型含稀土低品位磷矿床, 矿床平均品位
w (P2O5)为17.22%, 已探明磷矿石储量13.48亿t, 稀土资源量350万t。近年研究发现, 新华磷矿矿石品位的波动变化与风化淋滤富集作用关系密切。为了进一步阐明风化淋滤作用对磷矿元素地球化学的影响及磷矿的次生富集规律, 以戈仲伍矿段为重点研究对象, 对含磷岩系开展了野外观察描述, 应用连续敲块法采集化学分析样品19件, 运用光学显微镜进行岩矿鉴定样品16件, 并对样品进行了岩石成分鉴定及综合研究工作。研究结果表明, 风化磷矿中w (P2O5)比原生磷矿提高了8%~18%,w (MgO)比原生磷矿降低了4%~7%, 风化强度处于弱到成熟阶段。织金新华风化磷矿的形成受到岩性条件、地质构造、水文条件等因素控制。本研究可以为深入研究该矿床的次生风化成矿作用对磷矿石化学成分的影响及为新的矿产研究提供资料, 为丰富我国风化淋积型磷矿床的成矿理论提供新认识, 为该矿区风化磷矿资源的合理开发利用提供理论指导。Abstract:The Xinhua phosphate mining are alocated in Zhijin County, Guizhou Province, is a famous superlarge low-grade phosphate deposit containing rare earth elements in the southwest of China.The average P2O5 grade of the deposit is 17.22%.The proven phosphorite ore resources are 1.348 billion tons, and the rare earth resources are 3 500 kilotons.In recent years, experts and scholars have found that the fluctuation of Xinhua phosphorite ore grade is closely related to weathering, leaching and enrichment effects.To further clarify the influence of weathering and leaching on the element geochemistry as well as the secondary enrichment of phosphate rock, the author focuses on the Gezhongwu ore block and carries out field observations and descriptions of phosphate rock series.A total of 19 chemical analysis samples were collected using block knocking method and 16 rock ore samples were identified through polarizing microscope.On these basis, identification and comprehensive research on the samples were conducted.The results show that the contents of P2O5 in the weathered phosphate rock are 8%-18%, higher than that in the primary phosphate rock, while the contents of MgO are 4%-7%, lower than that in the primary phosphate rock.The weathering intensity of phosphate rock is in the weak to mature stage.The formation of Xinhua weathered phosphate rock in Zhijin County is controlled by lithology, geological structure and hydrological conditions.The purpose of this paper is to provide new information for the further study of the influences of the secondary weathering mineralization of the ore deposit on the chemical composition of phosphate rock, to enrich the metallogenic theories of weathering eluvial phosphate mining in China and to provide the oretical guidance for the rational development and utilization of weathering phosphate resources in the mining area.
-
图 1 贵州织金新华磷矿区地质图(据文献[3]修改)
1.灯影组;2.戈仲伍组(磷矿层);3.牛蹄塘组-明心寺组;4.大埔组;5.断层;6.公路;7.河流;8.地点;9.磷矿点;10.矿段划分及名称;11.背斜轴迹;12.取样位置;13.地层界线
Figure 1. Geological map of the Xinhua phosphate mining area in Zhijin County, Guizhou Province
图 2 新华磷矿含磷岩系柱状图(据参考文献[22]修改)
Figure 2. Column map of the phosphate rock system from the Xinhua phosphate mining area
表 1 原生磷矿石与风化磷矿石的矿物成分及其质量分数变化
Table 1. Comparing mineral composition and content between primary phosphate ore and weathering phosphate ore
样品编号 矿石类型 矿石名称 矿物成分wB/% 磷灰石 白云石 石英 黄铁矿 铁质 泥质 G-1B 原生 含硅质白云质砂屑(生物屑)磷块岩 40 40 18 1< 1< 1< G-3B 原生 含硅质白云质砂屑(生物屑)磷块岩 40 40 18 1< 1< 1< GH-1B 原生 微含泥质硅质砂屑(生物屑)磷块岩 65 0 32 1< 1< 2 GH-5B 原生 含硅质白云质砂屑(生物屑)磷块岩 40 45 13 1< 1< 1< G-2B 风化 含硅质白云质砂屑(生物屑)磷块岩 75 13 10 1< 1< 1< GH-2B 风化 含硅质白云质砂屑(生物屑)磷块岩 40 45 13 1< 1< 1< GH-3B 风化 含硅质白云质砂屑(生物屑)磷块岩 50 40 8 1< 1< 1< GH-6B 风化 硅质砂屑(生物屑)磷块岩 60 0 38 1< 1< 1< 表 2 织金新华磷矿风化磷矿石判别指标
Table 2. Chemical index for weathered phosphate ore in the Xinhua phosphate mining area, Zhyijin
样品编号 风化指标 实验室编号 野外编号 w(CO2)<5.4 w(MgO)<1.4 P2O5/(MgO+CO2)>3.8 P2O5/CO2>4.9 w(2P2O5+H.P) ≥74% CaO/P2O5<1.5 15A397 GH-2 3.4 74 1.5 15A398 GH-3 4.21 1.15 5.1 7 77 1.4 15A399 GH-4 2.40 0.21 11.9 13 80 1.3 15A401 GH-6 2.27 0.17 11.7 13 83 1.4 15A409 GY-4 1.5 15A413 CTY-1 5.23 80 1.5 表 3 样品主要成分化学分析结果
Table 3. Main chemical composition of samples
实验室编号 野外编号 P2O5 Al2O3 Fe2O3 SiO2 CaO MgO CO2 H.P wB/% 15A396 GH-1 16.40 1.05 0.41 7.96 39.69 9.82 21.18 7.00 15A397 GH-2 26.62 1.06 0.24 20.06 40.32 1.94 5.96 20.76 15A398 GH-3 29.56 0.70 0.27 17.89 42.56 1.15 4.21 17.37 15A399 GH-4 30.96 1.17 0.22 19.57 41.68 0.21 2.40 18.30 15A400 GH-5 12.07 1.39 0.21 15.02 33.82 11.05 22.98 13.67 15A401 GH-6 28.56 0.75 0.18 25.89 38.77 0.17 2.27 25.68 15A402 GH-7 30.91 1.00 0.48 8.43 46.01 2.15 6.96 6.86 15A403 GH-8 21.69 0.74 0.20 9.06 41.87 6.97 16.41 8.28 15A404 GH-9 15.78 1.26 2.12 19.38 34.86 5.84 15.83 18.00 15A405 GH-10 22.28 2.49 1.70 18.40 37.06 3.33 9.03 16.96 15A406 GY-1 21.46 0.22 0.34 2.53 45.12 7.27 19.25 2.19 15A407 GY-2 19.72 0.83 0.24 2.27 44.47 9.00 20.81 1.63 15A408 GY-3 21.04 0.88 0.14 3.57 43.78 8.85 19.23 2.43 15A409 GY-4 31.50 0.83 0.41 2.18 48.70 3.60 8.74 1.00 15A410 G-1 16.13 0.77 0.07 9.30 38.40 8.84 24.41 8.21 15A411 G-2 24.48 0.71 0.07 9.43 43.65 4.97 13.23 8.29 15A412 G-3 16.42 1.05 0.07 6.00 42.01 10.38 22.00 1.20 15A413 CTY-1 14.76 1.36 0.34 51.48 22.68 2.02 5.23 50.87 15A414 CTY-2 14.59 0.99 0.14 20.47 34.22 8.19 19.18 19.36 注:H.P为酸不溶物;测试方法:(原子吸收)分光光谱;测试单位:中化地质矿山遵义实验中心 -
[1] 陈国勇, 杜远生, 张亚冠, 等. 黔中地区震旦纪含磷岩系时空变化及沉积模式[J]. 地质科技情报, 2015, 34(6): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506003.htmChen G Y, Du Y S, Zhang Y G, et al. Spatial and temporal variation and mineralization model of the Sinian phosphorus-bearing sequences in central Guizhou Province[J]. Geological Science and Technology Information, 2015, 34(6): 17-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506003.htm [2] Yang H Y, Xiao J F, Xia Y. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions[J]. Geoscience Frontiers, 2021, 12(5): 237-263. [3] 毛铁, 杨瑞东, 高军波, 等. 贵州织金寒武系磷矿床沉积特征及灯影组古喀斯特面控矿特征研究[J]. 地质学报, 2015, 89(12): 2374-2388. doi: 10.3969/j.issn.0001-5717.2015.12.013Mao T, Yang R D, Gao J B, et al. Study of sedimentary feature of Cambrian phosphorite and ore-controlling feature of old karst surface of the Dengying Formation in Zhijin, Guizhou[J]. Acta Geologica Sinica, 2015, 89(12): 2374-2388(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.12.013 [4] Zhou K, Fu Y, Ye Y, et al. Characteristics of the rare earth elements' accumulation of phosphorus rock series during the Early Cambrian, Guizhou Province[J]. Acta Mineralogica Sinica, 2019, 39(4): 420-431. [5] Liu X Q, Zhang H, Tang Y, et al. REE geochemical characteristic of apatite: Implications for ore genesis of the Zhijin phosphorite[J]. Minerals, 2020, 10(11): 1-22. [6] 陈吉艳, 杨瑞东, 张杰. 贵州织金新华含稀土磷矿稀土元素赋存状态研究[J]. 矿物学报, 2011, 31(1): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201001017.htmChen J Y, Yang R D, Zhang J. Mode of occurrence of rare earth elements in posphorite in Zhijin County, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2011, 31(1): 123-128(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201001017.htm [7] 杨捷, 何天元. 贵州织金县新华含稀土磷矿矿床地质特征及成因探讨[J]. 化工矿产地质, 2013, 35(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201301006.htmYang J, He T Y. Zhijin County Guizhou Province Xinhua containing rare earth phosphate rock deposit geological characteristics and reasons discussed[J]. Geology of Chemical Minerals, 2013, 35(1): 27-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201301006.htm [8] Chen J Y, Yang R D, Wei H R, et al. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze region[J]. Journal of Rare Earths, 2013, 31(1): 101-112. doi: 10.1016/S1002-0721(12)60242-7 [9] 郭海燕, 夏勇, 何珊, 等. 贵州织金磷块岩型稀土矿地球化学特征[J]. 矿物学报, 2017, 37(6): 755-763. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706010.htmGuo H Y, Xia Y, He S, et al. Geochemical characteristics of Zhijin phosphorite type rare: Earth deposit, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2017, 37(6): 755-763(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706010.htm [10] 聂登攀. 贵州织金富稀土磷矿稀土赋存状态及在酸/热解过程中行为研究[D]. 贵阳: 贵州大学, 2018.Nie D P. Study on rare earth occurrence state and behavior in acid/pyrolysis process of Zhijin rare earth rich phosphate rock in Guizhou[D]. Guiyang: Guizhou University, 2018(in Chinese with English abstract). [11] 常苏娟, 朱杰勇, 刘益, 等. 西南滇黔风化磷块岩研究现状与趋势[J]. 化工矿物与加工, 2010, 39(12): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201012014.htmChang S J, Zhu J Y, Liu Y, et al. Study status and trends of weathered phosphate rocks in Yunnan, Guizhou[J]. Industrial Minerals & Processing, 2010, 39(12): 41-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201012014.htm [12] 李铁生. 我国一种新的磷矿工业类型: 云南滇池地区风化磷块岩形成的基本条件[J]. 化工地质, 1991, 13(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199103001.htmLi T S. A new type of phosphate rock industry in China: Basic conditions for the formation of weathered phosphate rock in Dianchi Lake area, Yunnan[J]. Chemical Geology, 1991, 13(3): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199103001.htm [13] 田升平, 王庆龙, 朱红军. 西南地区风化磷定量勘查评价[J]. 化工矿产地质, 2004, 26(4): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200404002.htmTian S P, Wang Q L, Zhu H J. Fixed quantity exploration and assessment of weathered phosphoric in Southwest China[J]. Chemical and Mineral Geology, 2004, 26(4): 205-209(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200404002.htm [14] Cathcart J B. The phosphate deposits of Tennessee, USA[A]//Notholt A J G, Sheldon R P, Davidson D F. Phosphate Deposits of the World, Vol. 2: Phosphate Rock Resource[M]. Cambridge: Cambridge University Press, 1989: 6-12. [15] Jean-Pierre P. Phosphate deposits of the Senegal-Mauritania-Guinea Basin(West Africa): A review[J]. Procedia Engineering, 2014, 83: 27-36. [16] 李钟模. 中国西南地区风化磷矿远景区及资源评价简述[J]. 化工矿物与加工, 2007, 35(3): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ200708011.htmLi Z M. A brief description of weathered phosphate rock scenic spots and resource evaluation in Southwest China[J]. Chemical Minerals and Processing, 2007, 35(3): 35-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ200708011.htm [17] 张航飞, 文俊, 竹合林, 等. 四川沐川地区上二叠统宣威组底部稀土富集层地球化学特征及其成因[J]. 矿物岩石, 2021, 41(2): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202102003.htmZhang H F, Wen J, Zhu H L, et al. Geochemical characteristics and genesis of REE enrichment beds at the bottom of the Upper Permian Xuanwei Formation in Muchuan area, Sichuan Province[J]. Mineralogy and Petrology, 2021, 41(2): 24-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202102003.htm [18] Wang M, Sun X M, Ma M Y. Rare earth elements compositions and genesis of Xinhua large-scale phosphorite deposit in western Guizhou, China[J]. Journal of Rare Earths, 2005, 23(3): 323-330. [19] Li S, Zhang J, Wang H F, et al. Geochemial characteristics of dolomitic phosphorite containing rare earth elements and its weathered ore[J]. Minerals, 2019, 9(7): 1-12. [20] 吴祥和, 韩至钧, 蔡继锋, 等. 贵州磷块岩[M]. 北京: 地质出版社, 1995.Wu X H, Han Z J, Cai J F, et al. Guizhou phosphorite[M]. Beijing: Geological Publishing House, 1995(in Chinese). [21] 贵州省国土资源厅. 贵州省磷矿资源勘查与开发规划[R]. 贵阳: 贵州省国土资源厅, 2005: 15.Guizhou Provincial Department of Land and Resources. Exploration and development planning of phosphate rock resources in Guizhou Province[R]. Guiyang: Guizhou Provincial Department of Land and Resources, 2005: 15(in Chinese). [22] 陈川, 刘文, 张烨, 等. 贵州织金县新华磷矿大戛矿段矿床特征及成矿[J]. 四川地质学报, 2014, 34(4): 537-541. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201404013.htmChen C, Liu W, Zhang Y, et al. Geological features and ore-formation of the Dajia ore block of the Xinhua phosphate deposit in Zhijin, Guizhou[J]. Acta Geologica Sichuan, 2014, 34(4): 537-541(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201404013.htm [23] 许善任, 倪守昌. 滇东地区风化磷块岩物质组分研究[J]. 云南地质, 1992, 11(2): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199202006.htmXu S R, Ni S C. Study on the material components of weathered phosphorus rocks in eastern Yunnan[J]. Yunnan Geology, 1992, 11(2): 181-188(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199202006.htm [24] 张积寿. 滇池地区风化磷块岩的矿石特性[J]. 云南冶金, 1991, 20(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ199101005.htmZhang J S. Ore properties of weathered phosphorite in Dianchi Lake area[J]. Yunnan Metallurgy, 1991, 20(1): 21-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ199101005.htm [25] 戈定夷, 刘永先, 曾永孚. 滇东磷矿风化型矿石的判别指标讨论及次生风化富集作用[J]. 矿物岩石, 1994, 14(3): 29-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS403.003.htmGe D Y, Liu Y X, Zeng Y F. A discussion on weathering indexes of phosphorus ore from eastern Yunnan and the weathering process of phosphorite[J]. Journal of Mineralogy and Petrology, 1994, 14(3): 29-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS403.003.htm [26] 王建蕊, 张杰, 莫樊, 等. 原生与风化胶磷矿和白云石的表面化学特征及比较研究[J]. 矿物岩石, 2016, 36(1): 63-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201601011.htmWang J R, Zhang J, Mo F, et al. Comparative studies on the surface chemical characteristics of original and weathering ore between collophane and dolomite[J]. Journal of Mineralogy & Petrology, 2016, 36(1): 63-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201601011.htm [27] 田升平. 滇池地区风化磷块岩矿床的形成条件[J]. 矿山地质, 1994, 15(3): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199103001.htmTian S P. Forming conditions of weathered phosphorite deposit in Dianchi district[J]. Mining Geology, 1994, 15(3): 165-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199103001.htm [28] 韩豫川, 夏学惠, 肖荣阁, 等. 中国磷矿床[M]. 北京: 地质出版社, 2012.Han Y C, Xia X H, Xiao R G, et al. Phosphorus deposits in China[M]. Beijing: Geological Publishing House, 2012(in Chinese). [29] 程国繁, 刘幼平, 何英. 贵州册亨板其磷矿地质特征及其成因浅析[J]. 地质科技情报, 2016, 35(3): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603015.htmCheng G F, Liu Y P, He Y. Geological features and formation of the Banqi phosphate deposit, Ceheng, Guizhou[J]. Geological Science and Technology Information, 2016, 35(3): 121-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603015.htm [30] 贺瑾瑞, 朱杰勇, 刘益, 等. 地质构造对安宁磷矿区磷块岩风化的影响[J]. 矿业工程, 2010, 8(6): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS201006007.htmHe J R, Zhu J Y, Liu Y, et al. Influence of geological structure on weathering of phosphate rock in Anning phosphor ore mine[J]. Mining Engineering, 2010, 8(6): 13-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS201006007.htm [31] 田升平. 云南滇池尖山磷块岩风化程度与地质构造的关系[J]. 化工矿产地质, 1991, 13(3): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199104002.htmTian S P. Relationship between weathering degree and geological structure of Jianshan phosphorite in Dianchi Lake, Yunnan[J]. Chemical and Mineral Geology, 1991, 13(3): 15-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199104002.htm [32] 李铁生, 文素秋, 田升平, 等. 中国南方风化磷块岩研究[J]. 化工矿产地质, 1996, 18(3): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC603.009.htmLi T S, Wen S Q, Tian S P, et al. Weathered phosphorites in South China[J]. Geology of Chemical Minerals, 1996, 18(3): 196-200(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC603.009.htm [33] 贵州地质勘查院. 贵州省织金县新华磷矿区各仲伍矿段磷、稀土矿勘探地质设计[R]. 贵阳: 中化地质矿山总局贵州地质勘查院, 2007: 1-51.Guizhou Geological Exploration Institute. Exploration geological design of phosphorus and rare earth ore in Zhongwu ore section of Xinhua phosphate ore district, Zhijin County, Guizhou Province[R]. Guiyang: Guizhou Geological Exploration Institute of Sinochem General Administration of Geology and Mines, 2007: 1-51(in Chinese). [34] 田升平. 云南滇池地区磷块岩的风化门限及风化磷矿的成模式探讨[J]. 化工矿产地质, 1995, 17(3): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC501.002.htmTian S P. Formation of weathered phosphorite in Dianchi district of Yunnan Province and its model for mineralization[J]. Geology of Chemical Minerals, 1995, 17(3): 29-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC501.002.htm [35] 刘幼平, 程国繁, 刘坤, 等. 贵州西部地区"玄武岩-古风化壳沉积(堆积)型"铁矿成矿作用与成矿模式[J]. 地质科技情报, 2017, 36(4): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704013.htmLiu Y P, Cheng G F, Liu K, et al. Ore-forming role and its model of a sedimentary(accumulation) type of iron deposits from basalt-paleo-weathering crust in western Guizhou[J]. Geological Science and Technology Information, 2017, 36(4): 107-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704013.htm [36] 程国繁, 何英. 贵州册亨板其风化型磷矿成矿条件与成矿模式[J]. 矿物学报, 2016, 36(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602004.htmCheng G F, He Y. A Preliminary study on ore-forming conditions and its model for Banqi secondary phosphate deposit, Ceheng County, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2016, 36(2): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602004.htm [37] Wu W M, Yang R D, Wang Z P, et al. A new palaeo-weathering and leaching model for the formation of the ultra-large high-grade Kaiyang phosphate deposit, Guizhou, China[J]. Arabian Journal of Geosciences, 2021, 14(22): 1-9. [38] 张亚冠, 杜远生, 陈国勇, 等. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制[J]. 古地理学报, 2019, 21(2): 351-368. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902011.htmZhang Y G, Du Y S, Chen G Y, et al. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province[J]. Journal of Palaeogeography: Chinese Edition, 2019, 21(2): 351-368(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902011.htm [39] 王文清, 朱熙槐, 赵涛. 湖北鹤峰磷矿走马矿区岩湾矿段风化磷块岩特征及其形成的制约因素[J]. 化工地质, 1993, 15(4): 228-235. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199304003.htmWang W Q, Zhu X H, Zhao T. Characters and genetically controlling factors of weathered phosphorites from Yanwang mining block, Zouma mining district, Hefeng phosphate deposit, Hubei[J]. Geology of Chemical Minerals, 1993, 15(4): 228-235(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199304003.htm [40] Gál P, Polgári M, Józsa S, et al. Contribution to the origin of Mn-U-Be-HREE-enrichment in phosphorite, near Bükkszen-tkereszt, NE Hungary[J]. Ore Geology Reviews, 2020, 125: 1-28.