Analysis of microscopic pore structure and seepage mechanism of the Fuyang Oil Reservoir in Chaoyanggou Terrace
-
摘要:
基于扶余油层和杨大城子油层典型河道砂岩岩心样品,利用CT扫描物理实验和数字岩心重建技术,开展低渗透砂岩微观孔隙结构表征及渗流机理分析。通过矿物组分定量分析和扫描电镜拼图成像技术,识别出岩心矿物种类及其含量,划分出粒间孔、粒内孔和填隙物内孔共3种孔隙类型。针对总孔隙空间进行等效半径分布曲线计算,呈现明显的双峰结构,峰值主要集中在约50 μm和约1μm。利用重构的数字岩心模型模拟油水两相渗流,模拟结果显示,扶余油层油水共渗区较宽,残余油饱和度为30%~45%;杨大城子油层油水共渗区较窄,残余油饱和度为40%~55%。在毛管力和亲水性的作用下,水相优先进入小孔道,小孔道先于大孔道形成水锁,相较于扶余油层,杨大城子油层的喉道半径小,数量多,更易形成水锁,残余油饱和度较高。
Abstract:Based on the core samples of the typical channel sandstone from Fuyu and Yangdachengzi Reservoir, CT scanning physical experiments and digital core reconstruction technology were used to characterize the microscopic pore structure and analyze the seepage mechanism of low-permeability sandstone. By means of quantitative analysis of mineral composition and scanning electron microscopy, the types and contents of core minerals were identified, and three pore types were classified: intergranular pores, intragranular pores and interstitial pores. The equivalent radius distribution curve of the total pore space was calculated, showing an obvious bimodal structure, and the peak values were mainly approximately 50 μm and 1 μm. The reconstructed digital core model was used to simulate oil-water two-phase seepage. The simulation results showed that the oil-water coseepage zone of Fuyu Reservoir was wide and the residual oil saturation was approximately 30%-45% in the process of oilfield development. The residual oil saturation of Yangdachengzi Reservoir was approximately 40%-55%. Under the action of capillary force and hydrophilicity, the water phase preferably entered the small pore channel, and the small pore channel formed the water lock before the large pore channel. Compared with the Fuyu Reservoir, the throat radius of Yangdachengzi Reservoir was smaller, and the number was greater, which made it easier to form a water lock, and the residual oil saturation was higher.
-
图 2 松辽盆地北部构造区划图(据文献[17]修改)
Figure 2. Tectonic zoning of the northern Songliao Basin
表 1 实验样品编号及物性信息表
Table 1. No. of test sample and physical property information
-
[1] 李俊健, 成宝洋, 刘仁静, 等. 基于数字岩心的孔隙尺度砂砾岩水敏微观机理[J]. 石油学报, 2019, 40(5): 594-603. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905009.htmLi J J, Cheng B Y, Liu R J, et al. Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core[J]. Acta Petrolei Sinica, 2019, 40(5): 594-603(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905009.htm [2] 陈浩, 黄继新, 聂志泉, 等. 基于全岩心CT的遗迹化石定量表征新方法: 以加拿大麦凯Ⅲ油砂区块为例[J]. 地质科技通报, 2021, 40(4): 252-259. doi: 10.19509/j.cnki.dzkq.2021.0419Chen H, Huang J X, Nie Z Q, et al. Quantitative characterization of ichnology based on CT scan: A case study of Mackay-Ⅲ oil sands, Canada[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 252-259(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0419 [3] 鄢友军, 李隆新, 徐伟, 等. 三维数字岩心流动模型技术在四川盆地缝洞型储层渗流研究中的应用[J]. 天然气地球科学, 2017, 28(9): 1425-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201709016.htmYan Y J, Li L X, Xu W, et al. Application of 3D digital core flow simulation technique in the study of gas flow in fractured-vuggy gas reservoirs in Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(9): 1425-1432(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201709016.htm [4] Zhao H Q, Macdonald I F, Kwiecien M J. Multi-orientation scanning: A necessity in the identification of pore necks in porous media by 3-D computer reconstruction from serial section data[J]. Journal of Colloid and Interface Science, 1994, 162(2): 390-401. doi: 10.1006/jcis.1994.1053 [5] Sheppard A P, Sok R M, Averdunk H. Improved pore network extraction methods[C]//Anon. Proceedings of International Symposium of the Society of Core Analysts, Toronto, Canada, 2005: 1-11. [6] Hu D, Blunt M J. Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E, 2009, 80(3): 1-11. [7] Silin D B, Jin G D. Robust determination of pore space morphology in sedimentary rocks[J]. Journal of Petroluem Technology, 2003, 56(5): 69-70. [8] Al-Kharusi A S, Blunt M J. Network extraction from sandstone and carbonate pore space images[J]. Journal of Petroluem Science and Engineering, 2007, 56(4): 219-231. doi: 10.1016/j.petrol.2006.09.003 [9] Jiao K, Yao S, Liu C, et al. The characterization and quantitative FESEM-FIB and image processing: An example from the Lower Silurian Longmaxi Shale, upper Yangtze region, China[J]. International Journal of Coal Geology, 2014, 128/129: 1-11. doi: 10.1016/j.coal.2014.03.004 [10] Ju Y, Gong W, Chang C, et al. Three-dimension characterization of multi-scale structures of the Silurian Longmaxi Shale using focused ion beam-scanning electron microscopy and reconstruction technology[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 26-37. doi: 10.1016/j.jngse.2017.07.015 [11] 屈乐, 孙卫, 杜环虹, 等. 基于CT扫描技术的三维数字岩心孔隙结构表征方法及应用: 以莫北油田116井区三工河组为例[J]. 现代地质, 2014, 28(1): 190-196. doi: 10.3969/j.issn.1000-8527.2014.01.020Qu L, Sun W, Du H H, et al. Characterization technique of pore structure by 3D digital core based on CT scanning and its application: An example from Sangonghe Formation of 116 Well field in Mobei Oilfield[J]. Geoscience, 2014, 28(1): 190-196(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2014.01.020 [12] 赵建鹏, 陈惠, 李宁, 等. 三维数字岩心技术岩石物理应用研究进展[J]. 地球物理学进展, 2020, 35(3): 1099-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202003037.htmZhao J P, Chen H, Li N, et al. Research advance of petrophysical application based on digital core technology[J]. Progress in Geophysics, 2020, 35(3): 1099-1108(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202003037.htm [13] 赵翰卿. 大庆油田精细储层沉积学研究[M]. 北京: 石油工业出版社, 2012: 1-281.Zhao H Q. Daqing Oilfield fine reservoir sedimentology[M]. Beijing: Petroleum Industry Press, 2012: 1-281(in Chinese). [14] 任战利, 崔军平, 史政, 等. 中国东北地区晚古生代构造演化及后期改造[J]. 石油与天然气地质, 2010, 31(6): 734-742. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006009.htmRen Z L, Cui J P, Shi Z, et al. The Late Paleozoic tectonic evolution and later trans formation in Northeast China[J]. Oil & Gas Geology, 2010, 31(6): 734-742(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006009.htm [15] 王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089Wang X D, Wang R, Shi W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0089 [16] 张帆, 萧汉敏, 姜振学, 等. 大庆油田扶余油层储层特征及经济甜点分类方案[J]. 地质科技通报, 2020, 39(6): 52-63. doi: 10.19509/j.cnki.dzkq.2020.0605Zhang F, Xiao H M, Jiang Z X, et al. Reservoir characteristics and economic sweet classification scheme of Fuyu reservoir in Daqing Oilfield[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 52-63(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0605 [17] 张顺, 崔坤宁, 张晨晨, 等. 松辽盆地泉头组三、四段河流相储层岩性油藏控制因素及分布规律[J]. 石油与天然气地质, 2011, 32(3): 411-419. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201103018.htmZhang S, Cui K N, Zhang C C, et al. Controlling factors and distribution patterns of lithologic pools in the fluvial facies of the 3rd and 4th members of the Quantou Formation in the Songliao Basin[J]. Oil & Gas Geology, 2011, 32(3): 411-419(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201103018.htm [18] 陈昭年, 王永卓, 王小敏. 松辽盆地朝长地区扶杨油层油气运移模式[J]. 断块油气田, 2009, 16(6): 22-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200906010.htmChen Z N, Wang Y Z, Wang X M. Hydrocarbon migration pattern of Fuyang reservoir in Chaochang area of Songliao Basin[J]. Fault-Block Oil & Gas Field, 2009, 16(6): 22-24(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200906010.htm [19] Rosenberg E, Lynch J, Gueroult P, et al. High resolution 3D reconstructions of rocks and composites[J]. Oil & Gas Science and Technology, 1999, 54(4): 497-511(in Chinese with English abstract). [20] 谢武仁, 杨威, 赵杏媛, 等. 川中地区须家河组绿泥石对储集层物性的影响[J]. 石油勘探与开发, 2010, 37(6): 674-679. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006007.htmXie W R, Yang W, Zhao X Y, et al. Influence of chlorite on reservoir physical properties of the Xujiahe Formation in the central part of Sichuan Basin[J]. Petroleum Exploration and Development, 2010, 37(6): 674-679(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006007.htm [21] 孟万斌, 吕正祥, 冯明石, 等. 致密砂岩自生伊利石的成因及其对相对优质储层发育的影响: 以川西地区须四段储层为例[J]. 石油学报, 2011, 32(5): 783-790. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105008.htmMeng W B, Lü Z X, Feng M S, et al. The origin of authigenic illite in tight sandstones and its effect on the formation relatively high-quality reservoirs: A case study on sandstones in the 4th Member of Xujiahe Formation, western Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(5): 783-790(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105008.htm [22] 周晓峰, 唐海忠, 魏军, 等. 砂岩高岭石赋存状态、成因机制及其对物性的影响: 以酒泉盆地营尔凹陷下沟组为例[J]. 东北石油大学学报, 2019, 43(1): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201901006.htmZhou X F, Tang H Z, Wei J, et al. Occurrences and formation mechanisms of kaolinite cements in sandstones and their effects on sandstone property: Taking Xiagou Formation in Yinger Depression, Jiuquan Basin as an example[J]. Journal of Northeast Petroleum University, 2019, 43(1): 40-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201901006.htm [23] Aplin A C, MatenaarI F, McCarty D K, et al. Influence of mechanical and clay mineral diagenesison the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones[J]. Claysand Clay Minerals, 2006, 54(4): 500-514. [24] Dong H. Micro-CT imaging and pore network extraction[D]. London: Imperial College, 2007. [25] Wu Y, Tahmasebi P, Lin C, et al. Effects of micropores on geometric, topological and transport properties of pore systems for low-permeability porous media[J]. Journal of Hydrology, 2019, 575: 327-342. [26] Wu Y, Tahmasebi P, Lin C, et al. A comprehensive study on geometric, topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM, MICP, X-ray CT experiments[J]. Marine and Petroleum Geology, 2019, 103: 12-28. [27] 刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性关系[J]. 地质科技通报, 2021, 40(1): 57-68. doi: 10.19509/j.cnki.dzkq.2021.0102Liu K, Shi W Z, Wang R, et al. Pore structure fractal characteristics and its relationship with reservoir properties of the first Member of Lower Shihezi Formation tight sandstones in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0102 [28] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. [29] Wang L, He Y M, Xian P, et al. Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng IV Member, Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2020, 111: 44-65. [30] Clarkson C R, Freeman M, He L, et al. Characterization of tight gas reservoir pore using USANS/SANS and gas adsorption analysis[J]. Fuel, 2012, 95(2): 371-385.