留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用

刘军 龚伟 黄超 李伟 李弘艳 董晓彬 蒋恕

刘军, 龚伟, 黄超, 李伟, 李弘艳, 董晓彬, 蒋恕. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112
引用本文: 刘军, 龚伟, 黄超, 李伟, 李弘艳, 董晓彬, 蒋恕. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112
Liu Jun, Gong Wei, Huang Chao, Li Wei, Li Hongyan, Dong Xiaobin, Jiang Shu. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112
Citation: Liu Jun, Gong Wei, Huang Chao, Li Wei, Li Hongyan, Dong Xiaobin, Jiang Shu. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112

塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用

doi: 10.19509/j.cnki.dzkq.2022.0112
基金项目: 

中国石油化工股份有限公司西北油田分公司科研项目 34400008-19-ZC0613-0022

详细信息
    作者简介:

    刘军(1982-), 男, 副研究员, 主要从事石油物探综合性研究。E-mail: xbsj@sinopec.com

    通讯作者:

    蒋恕(1976-), 男, 教授, 博士生导师, 主要从事非常规油气资源地质与工程研究工作。E-mail: jiangsu@cug.edu.cn

  • 中图分类号: P631.4;P618.13

Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin

  • 摘要:

    塔里木盆地顺北5号走滑断裂及其伴生裂缝的分布控制了储层的形成和油气的运聚成藏。如何选择对裂缝储层响应好的地震属性并用其描述储层的空间展布, 是裂缝型储层预测的研究基础。由于研究区不同尺度断裂裂缝发育规模差异较大及客观上存在地震分辨率的差异, 在实际研究过程中需要采用不同的技术方法及其组合对不同尺度和特征的断裂裂缝进行识别。地震属性对比测试表明倾角约束的高精度相干体和面状特征属性可表征断距超过40 m的大尺度断裂; 分频融合相干和应变能属性可表征断距15~40 m的中尺度断裂; 断裂似然体刻画和缝洞增强体可表征断距15 m以下的小尺度断层和裂缝。然后将典型地震属性与成像测井解释得到的实际裂缝数据及裂缝密度曲线进行相关性拟合, 进而优选出混沌属性、面状属性、结构张量第三分量、分频融合相干4种属性, 并将4种属性融合成新的属性用于裂缝密度体计算, 最后用该方法半定量预测裂缝的分布。裂缝预测结果表明以走滑断裂带中部的压扭性断裂处为中心, 约1.5 km范围的鹰山组下段地层整体裂缝最为发育, 为优势储层勘探开发区。

     

  • 图 1  主要断裂分布、典型地震测线及井的位置图(a)与塔里木盆地顺北研究区(b)(修改自文献[1])

    Figure 1.  Study area of northern Shunbei in Tarim Basin (b) and the distribution of major faults, seismic lines and wells (a)

    图 2  塔里木盆地顺北工区主要断裂统计图

    Figure 2.  Statistics of main faults in the Shunbei area of Tarim Basin

    图 3  塔里木盆地顺北5号断裂带北段T74、T80层位相干与断裂解释图

    a.T74界面相干属性切片;b.T74界面断裂解释;c.T80界面相干属性切片;d.T80界面断裂解释。1~9为断裂编号

    Figure 3.  Coherency and interpreted faults of the T74 and T80 horizons in Shunbei No.5 fault zone in Tarim Basin

    图 4  大中小尺度断裂示意图

    Figure 4.  Diagram of the large, medium and small scale faults

    图 5  大尺度断裂与相干体属性(a)及面状特征属性(b)叠合剖面图(XLine1053位置见图 1)

    Figure 5.  Overlap diagram of large scale faults and coherency (a), plane feature attribute (b)

    图 6  中尺度断裂与分频融合相干属性(a)和应变能属性(b)叠合剖面图(剖面XLine1024, XLine1022位置见图 1)

    Figure 6.  Overlap diagram of medium-scale faults and multi-coherent merge (a), strain-energy attributes (b)

    图 7  XLine1024剖面小尺度断裂裂缝与断裂似然体刻画缝洞增强体(a)和属性剖面图(b)(剖面XLine 1024位置见图 1)

    Figure 7.  Overlap diagram of medium-scale faults and fractures and multi-coherent merge (a), strain-energy attributes (b) in XLine1024 section

    图 8  XLine1044剖面基于结构张量梯度约束相干体与倾角导向相干体(a)和计算断裂似然体(b)刻画结果对比图(剖面位置XLine1044位置见图 1)

    Figure 8.  Comparison of calculated fracture thin likelihood results (b) based on structural tensor gradient constrained coherence and dip guided coherence (a) in XLine1044 section

    图 9  XLine1024剖面基于结构张量梯度约束相干体(a)与倾角导向相干体(b)计算缝洞增强体结果对比图(剖面位置XLine1024位置见图 1)

    Figure 9.  Comparison of Fracture-Gave Gain results based on structural tensor gradient constrained coherence (a) and dip guided coherence (b) in XLine1024 section

    图 10  XLine1019剖面过W-3井成像测井裂缝解释结果图(过井剖面XLine1019位置见图 1)

    a.W-3井成像测井解释结果图;b.测1井段在剖面中的位置展示

    Figure 10.  Fracture interpretation results of EMI in well W-3, XLine1019 section

    图 11  W-3井裂缝密度与混沌属性、面状特征、结构张量第三分量、分频融合相干相关性曲线对比图

    Figure 11.  Correlation of curves for fracture density with chaos, plane character, the third component of structure tensor, and frequency division coherence fusion in Well W-3

    图 12  研究区不同层界面裂缝密度体切片对比图

    Figure 12.  Comparison of fracture density at different horizons in the study area

    表  1  地震属性对断裂裂缝响应强度表

    Table  1.   Response strength of seismic attributes to fractures

    属性名称
    应力方位 瞬时振幅 瞬时频率 瞬时相位 线性特征
    中心频率 方位角 结构张量第一分量 倾角偏移量(CDP方向) 方向倾角
    倾角偏移量(测线方向) 最大曲率 最大负曲率 应变 纹理属性
    方差体 倾角 最大正曲率 蚂蚁体 应力方位
    断裂似然体 断裂似然体刻画 相似 连续 结构张量第三分量
    应变能 混沌 面状特征 断裂特征 相干体
    结构张量第二分量 缝洞增强体 分频融合相干
    下载: 导出CSV
  • [1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm

    Jiao F Z. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
    [2] Han X Y, Deng S, Tang L J, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: A study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427. doi: 10.1016/j.marpetgeo.2017.08.033
    [3] He D F, Zhou X Y, Yang H J, et al. Formation mechanismand tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221.
    [4] Zhao R, Deng S, Yun L, et al. Description of the reservoir along strike-slip fault zones in China T-Sh oilfield, Tarim Basin[J]. Carbonates and Evaporites, 2020, 36(1): 1-12.
    [5] Huang T Z. Structural interpretation and petroleum exploration targets in northern slope of middle Tarim Basin[J]. Petroleum Geology& Experiment, 2014, 36(3): 257-267.
    [6] 邬光辉, 成丽芳, 刘玉魁, 等. 塔里木盆地寒武-奥陶系走滑断裂系统特征及其控油作用[J]. 新疆石油地质, 2011, 32(3): 239-243. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htm

    Wu G H, Cheng L F, Liu Y K, et al. Strike-slip fault system of the Cambrian-Ordovician and its oil-controlling effect in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 239-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htm
    [7] John H M, R William K, Eugene E W, et al. Investigating fault continuity associated with geologic carbon storage planning in the Illinois Basin[J]. Greenhalgh, 2014, 2(1): 151-162.
    [8] 李宗杰, 杨子川, 李海英, 等. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J]. 石油物探, 2020, 59(2): 283-294. doi: 10.3969/j.issn.1000-1441.2020.02.015

    Li Z J, Yang Z C, Li H Y, et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 283-294(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.02.015
    [9] 苑雅轩. 顺北5号北段走滑断裂特征及其控储作用研究[D]. 北京: 中国地质大学(北京), 2020.

    Yuan Y X. Study on the characteristics of strike-slip faults in the north section of No. 5 Shunbei and its controlling and storage effect[D]. Beijing: China University of Geosciences(Beijing), 2020(in Chinese with English abstract).
    [10] 高金栋, 周立发, 冯乔, 等. 储层构造裂缝识别及预测研究进展[J]. 地质科技情报, 2018, 37(4): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm

    Gao J D, Zhou L F, Feng Q, et al. Progress in reservoir structural fracture characterization and Prediction[J]. Geological Science and Technology Information, 2018, 37(4): 158-166(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm
    [11] 何松林, 张小兵. 塔里木盆地塔北地区T74不整合面古构造演变过程[J]. 断块油气田, 2019, 26(4): 409-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904002.htm

    He S L, Zhang X B. Paleostucture evolution process of T74 unconformity in Tabei area, Tarim Basin[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 409-414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904002.htm
    [12] 张延玲, 杨长春, 贾曙光. 地震属性技术的研究和应用[J]. 地球物理学进展, 2005, 20(4): 1129-1133. doi: 10.3969/j.issn.1004-2903.2005.04.036

    Zhang Y L, Yang C C, Jia S G. The application of the seismic attributes[J]. Progress in Geophysics, 2005, 20(4): 1129-1133(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2005.04.036
    [13] Zhang Y F, Tan F, Qu H Z, et al. Karst monadnock fine characterization and reservoir control analysis: A case from Ordovician weathering paleokarst reservoirs in Lungu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(5): 758-769. doi: 10.1016/S1876-3804(17)30086-1
    [14] Fernando A N, Zahrani M S, Bremkamp S W. Detection of potential fractures and small faults using seismic attributes[J]. Leading Edge, 2004, 23(9): 903-906. doi: 10.1190/1.1803500
    [15] Zhang X X, Yu J J, Li N Y. Multi-scale fracture prediction and characterization method of a fractured carbonate reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(1): 191-202. doi: 10.1007/s13202-020-01033-w
    [16] Jose N M, Qiang J, María G. Fracture characterization and modeling of karsted carbonate reservoirs: A case study in Tahe oilfield, Tarim Basin (western China)[J]. Marine and Petroleum Geology, 2020, 112: 104104. doi: 10.1016/j.marpetgeo.2019.104104
    [17] 刘振峰, 曲寿利, 孙建国. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2): 191-198, 106. doi: 10.3969/j.issn.1000-1441.2012.02.013

    Liu Z F, Qu S L, Sun J G. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2): 191-198, 106(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2012.02.013
    [18] 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm

    Liu J S, Ding W L, Xiao Z K, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
    [19] Li Y Q, Sun J F, Wei H H, et al. Architectural features of fault-controlled karst reservoirs in the Tahe Oilfield[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106208. doi: 10.1016/j.petrol.2019.106208
    [20] 姜秀清. 储层地震属性优化及属性体综合解释[D]. 广州: 中国科学院广州地球化学研究所, 2006.

    Jiang X Q. The Optimization of Reservoir Seismic Attributes and the Comprehensive Interpretation of Attribute-body[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2006(in Chinese with English abstract).
    [21] 廖龙. 基于地震相干体数据的裂缝及断层检测方法研究[D]. 成都: 电子科技大学, 2020.

    Liao L. Fracture and fault detection based on seismic coherence data[D]. Chengdu: University of Electronic Science and Technology of China, 2020(in Chinese with English abstract).
    [22] 王震, 文欢, 邓光校, 等. 塔河油田碳酸盐岩断溶体刻画技术研究与应用[J]. 石油物探, 2019, 58(1): 149-154. doi: 10.3969/j.issn.1000-1441.2019.01.017

    Wang Z, Wen H, Deng G X, et al. Fault-karst characterization technology in the Tahe Oilfield, China[J]. Geophysical Prospecting for Petroleum, 2019, 58(1): 149-154(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2019.01.017
    [23] Zhao C Q, Zhou Y B, Li Y, et al. Application of gradient structure tensor method in CBM fracture identification and sweet spot prediction[J]. Arabian Journal of Geosciences, 2019, 12(20): 1-13.
    [24] 韩磊, 张宏, 王劲松, 等. 分频相干技术在复杂断裂解释中的应用[J]. 复杂油气藏, 2016, 9(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201604005.htm

    Han L, Zhang H, Wang J S, et al. Discrete frequency coherency technology for interpreting complicated faults and its application[J]. Complex Hydrocarbon Reservoirs, 2016, 9(4): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201604005.htm
    [25] 李飞跃, 杨海长, 纪沫, 等. 频倾角相干融合技术在琼东南盆地深水区断裂解释中的应用[J]. 石油物探, 2020, 59(6): 918-926. doi: 10.3969/j.issn.1000-1441.2020.06.010

    Li F Y, Yang H Z, Ji M. Application of a frequency-divided dip coherency fusion for the fracture interpretation in the deep waters of the Qiongdongnan Basin[J]. Geophysical Prospecting for Petroleum, 2020, 59(6): 918-926(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.06.010
    [26] 尹川, 杜向东, 赵汝敏, 等. 小波分频倾角相干在复杂断裂解释中的应用[J]. 石油地球物理勘探, 2015, 50(2): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201502026.htm

    Yin C, Du X D, Zhao R M, et al. Dip-steering similarity based on wavelet decomposition in complex fault interpretation[J]. Oil Geophysical Prospecting, 2015, 50(2): 346-350(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201502026.htm
    [27] Zhao R, Zhao T, Kong Q F, et al. Relationship between fractures, stress, strike-slip fault and reservoir productivity, China Shunbei oil field, Tarim Basin[J]. Carbonates and Evaporites, 2020, 35(3): 1-14.
    [28] 丁文龙, 樊太亮, 黄晓波, 等. 塔里木盆地塔中地区上奥陶统古构造应力场模拟与裂缝分布预测[J]. 地质通报, 2011, 30(4): 588-594. doi: 10.3969/j.issn.1671-2552.2011.04.016

    Ding W L, Fan T L, Hang X B, et al. Upper Ordovician paleo tectonic stress field simulating and fracture distribution forecasting in Tazhong area of Tarim Basin[J]. Geological Bulletin of China, 2011, 30(4): 588-594(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2011.04.016
    [29] 王月蕾, 陈学国, 于洋, 等. 基于应力场分析裂缝预测技术在车排子地区石炭系火成岩储层中的应用[J]. 地质科技情报, 2018, 37(1): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801010.htm

    Wang Y L, Chen X G, Yu Y, et al. Crack prediction technology based on stress field analysis of the Carboniferous igneous reservoirs in Chepaizi area[J]. Geological Science and Technology Information, 2018, 37(1): 74-78(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801010.htm
    [30] 马妮, 印兴耀, 宗兆云, 等. 基于曲率属性的构造应力预测方法[J]. 石油地球物理勘探, 2020, 55(3): 643-650. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202003020.htm

    Ma N, Yin X Y, Zong Z Y. Tectonic stress prediction method based on curvature attribute[J]. Oil Geophysical Prospecting(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202003020.htm
    [31] 马德波, 赵一民, 张银涛, 等. 最大似然属性在断裂识别中的应用: 以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6): 817-825. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806008.htm

    Ma D B, Zhao Y M, Zhang Y T, et al. Application of maximum likelihood attribute to fault identification: A case study of Rewapu block in Halahatang area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2018, 29(6): 817-825(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806008.htm
    [32] 王鹏, 刘军, 顾汉明. 不连续性属性增强技术在顺北地区断控不同尺度裂缝检测中的应用[J]. 工程地球物理学报, 2019, 16(2): 131-137. doi: 10.3969/j.issn.1672-7940.2019.02.001

    Wang P, Liu J, Gu H M. The Application of enhancement for seismic discontinuity attributes to detection of fracture with different scales in Shunbei area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(2): 131-137(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2019.02.001
    [33] 王震, 文欢, 胡文革. 塔河油田碳酸盐岩缝洞空间位置预测方法研究[J]. 工程地球物理学报, 2019, 16(4): 433-438. doi: 10.3969/j.issn.1672-7940.2019.04.002

    Wang Z, Wen H, Hu W G. Study on spatial location prediction method of fractured- vuggy carbonate reservoir in Tahe Oilfield[J]. Chinese Journal of Engineering Geophysics, 2019, 16(4): 433-438(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2019.04.002
    [34] 赵迎月, 顾汉明, 李宗杰, 等. Wigner-Ville高阶时频谱及其在塔中奥陶系缝洞型储层预测中的应用[J]. 石油地球物理勘探, 2010, 45(5): 688-694. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201005014.htm

    Zhao Y Y, Gu H M, Li Z J, et al. Wigner-Ville higher-order time & frequency spectrum and its application in prediction of Ordovician fractured-vuggy reservoir in Tazhong area[J]. Oil Geophysical Prospecting, 2010, 45(5): 688-694(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201005014.htm
    [35] 袁联生. 塔里木盆地玉北地区中-下奥陶统断溶体识别[J]. 石油物探, 2020, 59(4): 628-636. doi: 10.3969/j.issn.1000-1441.2020.04.013

    Yuan L S. Identifying fault-karst reservoirs in Middle-Lower Ordovician carbonates in the Yubei area, Tarim Basin, China[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 628-636(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.04.013
    [36] Wang C, Lu Y C, Huang H G, et al. New seismic attribute technology for predicting dissolved pore-fracture of deeply buried platform margin reef-beach system in Northeast Sichuan Basin, China[J]. Journal of Earth Science, 2015, 26(3): 373-383. doi: 10.1007/s12583-015-0540-0
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  971
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08

目录

    /

    返回文章
    返回