留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四维地震驱动的深海浊积岩油藏地质模型更新方法及应用:以安哥拉PU油田为例

赵巍 张文彪 李蒙 赵华伟 陆文明 廉培庆

赵巍, 张文彪, 李蒙, 赵华伟, 陆文明, 廉培庆. 四维地震驱动的深海浊积岩油藏地质模型更新方法及应用:以安哥拉PU油田为例[J]. 地质科技通报, 2022, 41(4): 301-308. doi: 10.19509/j.cnki.dzkq.2022.0115
引用本文: 赵巍, 张文彪, 李蒙, 赵华伟, 陆文明, 廉培庆. 四维地震驱动的深海浊积岩油藏地质模型更新方法及应用:以安哥拉PU油田为例[J]. 地质科技通报, 2022, 41(4): 301-308. doi: 10.19509/j.cnki.dzkq.2022.0115
Zhao Wei, Zhang Wenbiao, Li Meng, Zhao Huawei, Lu Wenming, Lian Peiqing. Updating and application for a reservoir geological model of deep-water turbidites: A case study of a 4D seismic survey from the PU Oilfield in Angola[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 301-308. doi: 10.19509/j.cnki.dzkq.2022.0115
Citation: Zhao Wei, Zhang Wenbiao, Li Meng, Zhao Huawei, Lu Wenming, Lian Peiqing. Updating and application for a reservoir geological model of deep-water turbidites: A case study of a 4D seismic survey from the PU Oilfield in Angola[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 301-308. doi: 10.19509/j.cnki.dzkq.2022.0115

四维地震驱动的深海浊积岩油藏地质模型更新方法及应用:以安哥拉PU油田为例

doi: 10.19509/j.cnki.dzkq.2022.0115
基金项目: 

中国科学院战略先导A项目 XDA14010204

详细信息
    作者简介:

    赵巍(1979-), 女, 工程师, 主要从事油气田开发研究工作。E-mail: zhaowei.syky@sinopec.com

    通讯作者:

    张文彪(1984-), 男, 高级工程师, 主要从事油气田开发地质及三维地质建模研究工作。E-mail: wenbiao211@163.com

  • 中图分类号: P618.13

Updating and application for a reservoir geological model of deep-water turbidites: A case study of a 4D seismic survey from the PU Oilfield in Angola

  • 摘要:

    传统的油藏模型更新过程中, 油藏模型的最终优选主要以单井历史拟合结果为准, 井间剩余油分布预测是否合理往往无据可循, 存在较大不确定性。四维地震是现代油藏监测的重要手段之一, 对于指导井间剩余油分布预测具有较强优势。为进一步提升油藏地质模型更新的准确度, 提出在常规地质模型更新过程中融入四维地震监测信息的研究思路, 以四维地震反映的流体变化信息作为井间"硬数据", 形成一套四维地震-地质建模-油藏数模闭环式油藏模型迭代更新方法。研究结果表明: 四维地震信息可作为动态信息贯穿到从地质建模-油藏数模的大循环中, 建模数模一体化技术更加完善; 四维地震可作为井间模型参数调整的重要参考依据, 实现剩余油监测的定量化, 提升油藏模型预测的准确度。该方法对于深海浊积岩油藏应用效果较好, 对于建模数模一体化技术的发展具有实践意义。

     

  • 图 1  四维地震驱动油藏模型更新方法及流程

    Figure 1.  Updating method and process of the 4D seismic monitoring reservoir model

    图 2  PU油藏不同流体驱替范围厘定

    a.地震差异波形反映不同的流体驱替类型;b.基于差异波形的不同流体驱替范围厘定

    Figure 2.  Determination of the fluid displacement range within the PU reservoir

    图 3  四维地震监测流体前缘与油藏模型预测结果存在差异

    a.PU油藏流体变化四维地震监测结果;b.PU油藏数模模拟的饱和度变化与四维地震监测存在差异

    Figure 3.  Difference between the fluid front prediction results from the 4D seismic monitoring and the reservoir modelling

    图 4  PU油藏模型中砂体展布范围修正

    Figure 4.  Correction of the sand body distribution range under the PU Reservoir model

    图 5  四维地震与油藏模型比较结果差异

    a.PU油藏四维地震MON1监测结果;b.PU油藏四维地震MON2监测结果

    Figure 5.  Difference between the 4D seismic model and the reservoir model

    图 6  PU油藏模型局部隔夹层分布位置及数量调整

    Figure 6.  Adjustment of distribution and quantity for local interlayers under the PU reservoir model

    图 7  PU油藏模型局部孔隙度参数调整

    Figure 7.  Adjustment of the local porosity parameters under the PU reservoir model

    图 8  更新后的PU油藏模型预测结果与四维地震监测结果趋于一致

    a.PU油藏四维地震监测结果;b.更新后PU油藏模型预测流体变化结果

    Figure 8.  Convergent tendency between the prediction results from the updated PU reservoir model and the 4D seismic monitoring model

  • [1] 张文彪, 段太忠, 张旭彪, 等. 安哥拉深水沉积贯入砂岩的识别特征及成因模式[J]. 地质科技情报, 2017, 36(2): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702012.htm

    Zhang W B, Duan T Z, Zhang X B, et al. Deep-water sedimentary sandstone injectite identification and its genetic model in angola[J]. Bulletin of Geological Science and Technology, 2017, 36(2): 97-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702012.htm
    [2] 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm

    Zhang W B, Duan T Z, Liu Y F, et al. Application status and development trend of quantitative geological modeling[J]. Bulletin of Geological Science and Technology, 2019, 38(3): 264-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm
    [3] 刘颖. 建模数模一体化在油田注水政策优化中的应用[J]. 中国石油大学胜利学院学报, 2014, 28(2): 16-20. doi: 10.3969/j.issn.1673-5935.2014.02.006

    Liu Y. Application of modeling integration in oilfield water injection policy optimization[J]. Journal of Shengli College China University of Petroleum, 2014, 28(2): 16-20(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5935.2014.02.006
    [4] Yan X, Li Y, Yao J, et al. Automatic history matching of reservoirs using the streamline-based EnKF method[J]. Acta Petrol Sinica, 2011, 32(3): 495-499.
    [5] Foroud T, Seifi A, Aminshahidi B. Assisted history matching using artificial neural network based global optimization method: Applications to Brugge field and a fractured Iranian reservoir[J]. Journal of Petroleum Science and Engineering, 2014, 123: 46-61. doi: 10.1016/j.petrol.2014.07.034
    [6] 赵伟. 中国海上时移地震技术应用的可行性研究[J]. 勘探地球物理进展, 2003, 26(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200301005.htm

    Zhao W. Feasibility study on time-lapse seismic offshore China[J]. Progress in Exploration Geophysics, 2003, 26(1): 30-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200301005.htm
    [7] 崔永谦, 刘池洋, 张以明. 油藏动态监测技术: 时延(四维) 地震述评[J]. 石油与天然气地质, 2004, 25(1): 81-86. doi: 10.3321/j.issn:0253-9985.2004.01.015

    Cui Y Q, Liu C Y, Zhang Y M. Reservoir dynamic monitoring: A commentary on time-lapse (or 4-D) seismics[J]. Oil & Gas Geology, 2004, 25(1): 81-86(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2004.01.015
    [8] 甘利灯, 姚逢昌, 杜文辉. 水驱油藏四维地震技术[J]. 石油勘探与开发, 2007, 34(4): 437-444. doi: 10.3321/j.issn:1000-0747.2007.04.009

    Gan L D, Yao F C, Du W H. 4D seismic technology for water flooding reservoirs[J]. Petroleum Exploration and Development, 2007, 34(4): 437-444(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2007.04.009
    [9] 陆红梅, 徐海, 沃玉进, 等. 时移地震"相对差异法"定量预测疏松砂岩油藏含油饱和度: 以西非深海泽塔油田为例[J]. 石油勘探与开发, 2019, 46(2): 409-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902027.htm

    Lu H M, Xu H, Wo Y J, et al. Quantitative prediction of oil saturation of unconsolidated sandstone reservoir based on time-lapse seismic "relative difference method": Taking Zeta oil field in West Africa as an example[J]. Petroleum Exploration and Development, 2019, 46(2): 409-416(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902027.htm
    [10] Sun H Y, Seongsik Y, Gibson R L, et al. Effect of pressure and fluid saturation changes on time- elapse AVO response[J]. SEG Expanded Abstracts, 2005, 24: 127- 132.
    [11] Foster D G. BP 4D experience over the last 10 years and current trends[C]//IPTC11757, 2007.
    [12] 霍进, 张新国, 吴平, 等. 四维地震技术在稠油开采中的应用[J]. 石油勘探与开发, 2001, 28(3): 80-82. doi: 10.3321/j.issn:1000-0747.2001.03.024

    Huo J, Zhang X G, Wu P, et al. The application of four-dimensional seismic technology to heavy oil production[J]. Petroleum Exploration and Development, 2001, 28(3): 80-82(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2001.03.024
    [13] 陈志海, 苑书金, 孙钰, 等. 四维地震监测深水浊积岩油藏动态[J]. 大庆石油地质与开发, 2015, 34(5): 127-130. doi: 10.3969/J.ISSN.1000-3754.2015.05.024

    Chen Z H, Yuan S J, Sun Y, et al. Perfoemance of deepwater turbidite oil reservoir monitored by 4D seismic survey[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(5): 127-130(in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2015.05.024
    [14] 杨勤勇. 四维地震勘探技术新进展[J]. 勘探地球物理进展, 2003, 26(6): 339-341, 348. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ2003Z1001.htm

    Yang Q Y. Advances in time-lapse seismic technology[J]. Progress in Exploration Geophysics, 2003, 26(6): 339-341, 348(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ2003Z1001.htm
    [15] 赵改善. 油藏动态监测技术的发展现状与展望—时延地震[J]. 勘探地球物理进展, 2005, 28(3): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200503002.htm

    Zhao G S. The status and outlook of dynamic reservoir monitoring: Time-lapse seismic[J]. Progress in Exploration Geophysics, 2005, 28(3): 157-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200503002.htm
    [16] 李文俊, 岳大力, 何贤科, 等. 地质模式约束的SVR属性融合在浅水三角洲储层描述中的应用: 以西湖凹陷X气田为例[J]. 地质科技通报, 2021, 40(6): 106-113. doi: 10.19509/j.cnki.dzkq.2021.0611

    Li W J, Yue D L, He X K, et al. Application of SVR attribute fusion constrained by geological model in reservoir description of shallow water delta: A case study of X gas field in Xihu Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 106-113(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0611
    [17] 荣宁, 吴迪, 韩易龙, 等. 微地震监测水驱前缘技术在哈得双台阶水平井的应用效果评价[J]. 大庆石油地质与开发, 2006, 25(2): 94-96. doi: 10.3969/j.issn.1000-3754.2006.02.032

    Rong N, Wu D, Han Y L, et al. Application evaluation of microearthquake monitoring waterflood front technique used to dual step horizontal wells in hade oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(2): 94-96(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3754.2006.02.032
    [18] 李伟, 王亚会, 陈肖, 等. 不同提液方式对强水驱海相砂岩油藏驱油效率影响的实验研究[J]. 地质科技通报, 2021, 40(5): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105031.htm

    Li W, Wang Y H, Chen X, et al. Experimental study on the effect of different liquid extraction methods on the oil displacement efficiency of strong water flooding marine sandstone reservoirs[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 301-306(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105031.htm
    [19] 云美厚, 丁伟, 王新红. 陆相薄互层油藏四维地震监测存在的问题与建议[J]. 石油地球物理勘探, 2005, 40(4): 444-450. doi: 10.3321/j.issn:1000-7210.2005.04.019

    Yun M H, Ding W, Wang X H. Problems existed in 4-D seismic monitoring of continental thin and interbedded reservoir and suggestions[J]. Oil Geophysical Prospecting, 2005, 40(4): 444-450(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7210.2005.04.019
    [20] Li M, Liu Z, Liu M, et al. Prediction of residual oil saturation by using the ratio of amplitude attributes of time-lapse seismicdata[J]. Geophysics, 2017, 82(1): 1-12.
  • 加载中
图(8)
计量
  • 文章访问数:  737
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回