Determination of permeability in tight sandstone reservoirs using Gaussian process regression and high-pressure porosimetry: A case study of the Member-7 of Yanchang Formation in the Jiyuan area of the Ordos Basin
-
摘要:
致密砂岩由于滑脱效应的存在, 其气测渗透率存在一定误差, 测定绝对渗透率对明确致密砂岩渗流特征有重要意义。高斯过程回归方法是目前最先进的机器学习算法, 在处理石油领域非线性和多维数复杂问题具有优势。以鄂尔多斯盆地姬塬地区长7段致密砂岩为研究对象, 将平方指数(SE)和马特恩(Matern)函数作为高斯过程回归模型中两个协方差函数, 通过高压压汞测试的孔隙度、未饱和汞体积比、门槛压力和分形维数来预测致密砂岩的绝对渗透率, 并结合误差分析来研究不同协方差模型预测渗透率的效果。结果表明, 马特恩协方差(Matern)模型的相对误差均值(
MMRE )、均方根误差(RMSE )、标准偏差(STD )分别为32%, 0.16和0.57, 准确度较高, 尤其当渗透率小于0.1×10-3μ m2时, 马特恩协方差(Matern)模型精度明显好于平方指数协方差(SE)模型和Winland经验公式。致密砂岩用马特恩模型预测渗透率精度更高。此外, 敏感性分析表明孔隙度对渗透率正影响最大, 门槛压力对渗透率负影响最大; 杠杆值和标准化残差证明高斯过程回归模型预测渗透率的有效性。综上, 马特恩协方差(Matern)模型对渗透率小于0.1×10-3μ m2致密砂岩适用性好, 对微纳米级孔喉发育的致密砂岩勘探评价有重要意义。Abstract:Because of the Klinkenberge effect in tight sandstones, errors exist forusing air permeability to reflect its reality, and it is thus important to determine the absolute permeability of tight sandstone.The Gaussian process regression (GPR), a state-of-the-art machine learning algorithm, has advantages in dealing with nonlinear and multidimensional complex problems in the petroleum industry. In this paper, the tight sandstone of the Member-7 of Yanchang Formation in the Jiyuan area of the Ordos Basin was taken as a sample to adopt the GPR model. In the model, the squared exponential and Matern covariance functions were taken as two covariance functions. The absolute permeability of tight sandstone was predicted by parameters including the porosity, volume ratio of unsaturated mercury, displacement pressure and fractal dimension measured by high-pressure porosimetry experiments, and the precision of different GPR models in predicting permeability were studied in combination with error analysis. The results indicate that GPR with Matern gives high precision with a mean magnitude relative error (MMRE), root mean square error (RMSE) and standard deviation (STD) equal to 32%, 0.16 and 0.57, respectively. Particularly, if the permeability is less than 0.1×10-3
μ m2, the precision of the Matern model is obviously better than that of the squared exponential model and Winland model, so the Matern model has higher precision for permeability prediction of tight sandstones. In addition, sensitivity analysis reveals that porosity and displacement pressure have the highest and lowest absolute impact values on permeability estimation. The applicability and effectiveness of the GPR model are also demonstrated by means of leverage values and standardized residuals. Therefore, the Matern model can better predict tight sandstone reservoirs with permeabilities less than 0.1×10-3μ m2, and this model plays an important role in the exploration and evaluation for tight sandstone reservoirs. -
表 1 致密砂岩样品参数统计表
Table 1. Statistics of the parameters of tight sandstone samples
参数 最小值 最大值 平均值 标准偏差 孔隙度/% 7.92 17.10 11.37 2.50 未饱和汞体积比/% 1.07 37.18 11.30 5.3 分形维数 2.30 3.05 2.68 0.16 门槛压力/MPa 0.28 2.91 1.91 0.59 渗透率/10-3 μm2 0.008 1.579 0.286 0.343 表 2 GPR模型与经验公式误差统计
Table 2. Statistics of errors of the GPR models and empirical-formula based models
模型 MMRE RMSE STD 平方指数协方差 0.75 0.29 3.02 Matern协方差 0.32 0.16 0.57 Winland经验公式 1.03 0.16 0.80 -
[1] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htmYao J L, Deng X Q, Zhao Y D, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm [2] 王勇杰, 王昌杰. 低渗透多孔介质中气体滑脱行为研究[J]. 石油学报, 1995, 16(3): 101-105. doi: 10.3321/j.issn:0253-2697.1995.03.008Wang Y J, Wang C J. A research of gas slip in low permeability porous media[J]. ACTA Petrolei Sinica, 1995, 16(3): 101-105(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1995.03.008 [3] 田景春, 刘伟伟, 王峰, 等. 鄂尔多斯盆地高桥地区上古生界致密砂岩储层非均质性特征[J]. 石油与天然气地质, 2014, 35(2): 183-189. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402003.htmTian J C, Liu W W, Wang F, et al. Heterogeneity of the Paleozoic tight sandstone reservoirs in Gaoqiao area of Ordos Basin[J]. Oil & Gas Geology, 2014, 35(2): 183-189(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402003.htm [4] Swanson B F. A simple correlation between permeabilities and mercury capillary pressures[J]. Journal of Petroleum Technology, 1981, 33(12): 2498-2504. doi: 10.2118/8234-PA [5] Jennings J B. Capillary pressure techniques application to exploration and development geology[J]. AAPG Bulletin, 1987, 71(10): 1196-1209. [6] Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curves for sandstones[J]. AAPG Bulletin, 1992, 76(2): 191-198. [7] 王伟, 丁黎, 陈小东, 等. 一种改进的通过压汞来计算致密砂岩渗透率经验方法: 以鄂尔多斯盆地姬塬地区长7致密砂岩为例[J]. 地质科技情报, 2018, 37(4): 153-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htmWang W, Ding L, Chen X D, et al. An improved empirical permeability estimator from mercury injection for tight sandstone: A case of Chang 7 tight sandstone in Jiyuan area of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2018, 37(4): 153-157(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htm [8] Lai J, Wang G. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J]. Journal of Natural Gas Science & Engineering, 2015, 24: 185-96. [9] Negash B M, Yaw A D. 基于人工神经网络的注水开发油藏产量预测[J]. 石油勘探与开发, 2020, 47(2): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002016.htmNegash B M, Yaw A D. Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection[J]. Petroleum Exploration and Development, 2020, 47(2): 357-365(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002016.htm [10] Saemi M, Ahmadi M, Varjani A Y. Design of neural networks using genetic algorithm for the permeability estimation of the reservoir[J]. Journal of Petroleum Science and Engineering, 2007, 59(1/2): 97-105. [11] Alireza R, Alireza B, Mohammadi A H, et al. Rigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: Smart modeling and correlation development[J]. Fuel, 2019, 236: 110-123. doi: 10.1016/j.fuel.2018.08.136 [12] 李俭川, 秦国军, 温熙森, 等. 神经网络学习算法的过拟合问题及解决方法[J]. 振动·测试与诊断, 2002, 22(4): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200204002.htmLi J C, Qin G J, Wen X S, et al. Over-fitting in neural network learning algorithms and its solving strategies[J]. Journal of Vibration, Measurement & Diagnosis, 2002, 22(4): 16-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200204002.htm [13] Asante-Okyere S, Shen C, Yao Y Z, et al. Investigating the predictive performance of Gaussian process regression in evaluating reservoir porosity and permeability[J]. Energies, 2018, 11(12): 1-13. [14] 付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5): 601-614. doi: 10.3969/j.issn.1672-7703.2019.05.007Fu J H, Niu X B, Dan W D, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.007 [15] Yang Y, Li W, Ma L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: A multicycle cratonic basin in Central China[J]. AAPG Bulletin, 2005, 89(2): 255-269. doi: 10.1306/10070404027 [16] Wu H, Zhang C, Ji Y, et al. Pore throat characteristics of tight sandstone of Yanchang Formation in eastern Gansu, Ordos Basin[J]. Petroleum Research, 2018, 3(1): 33-43. doi: 10.1016/j.ptlrs.2017.11.001 [17] 吴浩, 刘锐娥, 纪友亮, 等. 致密气储层孔喉分形特征及其与渗流的关系: 以鄂尔多斯盆地下石盒子组盒8段为例[J]. 沉积学报, 2017, 35(1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701015.htmWu H, Liu R E, Ji Y L, et al. Fractal characteristics of pore-throat of tight gas reservoirs and its relation with percolation: A case from He 8 Member of the Permian Xiashihezi Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(1): 151-162(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701015.htm [18] 孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htmSun B, Yao H T, Liu T. Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(29): 104-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htm [19] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htmHe Z K, Liu G B, Zhao X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm [20] 梁智, 孙国强, 俞娜燕, 等. 基于高斯过程回归和粒子滤波的短期风速预测[J]. 太阳能学报, 2020, 41(3): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htmLiang Z, Sun G Q, Yu N Y, et al. Short-term wind speed forecasting based on Gaussian process regression and particle filter[J]. Acta Energiae Sdoris Sinica, 2020, 41(3): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htm [21] 韩峰, 储可宽, 张熠, 等. 西北太平洋双台风引导气流的伴随敏感性分析[J]. 南京大学学报: 自然科学, 2020, 56(5): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202005003.htmHan F, Chu K K, Zhang Y, et al. The adjoint-derived sensitivity analysis of the steering flow of binary in the western North Pacific[J]. Journal of Nanjing University: Nature Science, 2020, 56(5): 35-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202005003.htm [22] 曾羽佳, 欧阳传湘, 曾庆伟, 等. 超低界面张力体系对低渗岩心非线性渗流规律的影响[J]. 地质科技通报, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027Zeng Y J, Ouyang C X, Zeng Q W, et al. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0027 [23] 李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60. doi: 10.19509/j.cnki.dzkq.2021.0404Li Z, Ye J R, Cao Q, et al. Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 49-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0404 [24] Chok N S. Pearson's versus Spearman's and Kendall's correlation coefficients for continuous data[D]. Pittsburgh: University of Pittsburgh, 2010. [25] 王敬, 赵卫, 刘慧卿, 等. 缝洞型碳酸盐岩油藏注水井间干扰特征及其影响因素[J]. 石油勘探与开发, 2020, 47(5): 990-999, 1051. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005016.htmWang J, Zhao W, Liu H Q, et al. Inter-well interferences and their influencing factors during water flooding in fractured-vuggy carbonate reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5): 990-999, 1051(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005016.htm [26] 王伟, 宋源娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30. doi: 10.19509/j.cnki.dzkq.2021.0402Wang W, Song Y J, Huang J, et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0402 [27] Gramatica P. Principles of QSAR models validation: Internal and external[J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701. [28] Hoaglin D C, Welsch R E. The hat matrix in regression and anova[J]. American Statistician, 1978, 32(1): 17-22.