留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯过程回归和高压压汞测定致密砂岩渗透率:以鄂尔多斯盆地长7段致密砂岩为例

王伟 许兆林 李维振 侯涛 李亚辉 白云云 朱玉双

王伟, 许兆林, 李维振, 侯涛, 李亚辉, 白云云, 朱玉双. 基于高斯过程回归和高压压汞测定致密砂岩渗透率:以鄂尔多斯盆地长7段致密砂岩为例[J]. 地质科技通报, 2022, 41(4): 30-37. doi: 10.19509/j.cnki.dzkq.2022.0117
引用本文: 王伟, 许兆林, 李维振, 侯涛, 李亚辉, 白云云, 朱玉双. 基于高斯过程回归和高压压汞测定致密砂岩渗透率:以鄂尔多斯盆地长7段致密砂岩为例[J]. 地质科技通报, 2022, 41(4): 30-37. doi: 10.19509/j.cnki.dzkq.2022.0117
Wang Wei, Xu Zhaolin, Li Weizhen, Hou Tao, Li Yahui, Bai Yunyun, Zhu Yushuang. Determination of permeability in tight sandstone reservoirs using Gaussian process regression and high-pressure porosimetry: A case study of the Member-7 of Yanchang Formation in the Jiyuan area of the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 30-37. doi: 10.19509/j.cnki.dzkq.2022.0117
Citation: Wang Wei, Xu Zhaolin, Li Weizhen, Hou Tao, Li Yahui, Bai Yunyun, Zhu Yushuang. Determination of permeability in tight sandstone reservoirs using Gaussian process regression and high-pressure porosimetry: A case study of the Member-7 of Yanchang Formation in the Jiyuan area of the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 30-37. doi: 10.19509/j.cnki.dzkq.2022.0117

基于高斯过程回归和高压压汞测定致密砂岩渗透率:以鄂尔多斯盆地长7段致密砂岩为例

doi: 10.19509/j.cnki.dzkq.2022.0117
基金项目: 

榆林学院高层次人才科研启动基金项目 18GK22

国家自然科学基金 41904128

国家自然科学基金 42062011

陕西省科技厅项目 2021SF-495

详细信息
    作者简介:

    王伟(1988-), 男, 讲师, 主要从事油气田开发地质研究。E-mail: 283465227@qq.com

    通讯作者:

    朱玉双(1968-), 女, 教授, 主要从事油气田开发地质与油层物理研究。E-mail: yshzhu@nwu.edu.cn

  • 中图分类号: TE311

Determination of permeability in tight sandstone reservoirs using Gaussian process regression and high-pressure porosimetry: A case study of the Member-7 of Yanchang Formation in the Jiyuan area of the Ordos Basin

  • 摘要:

    致密砂岩由于滑脱效应的存在, 其气测渗透率存在一定误差, 测定绝对渗透率对明确致密砂岩渗流特征有重要意义。高斯过程回归方法是目前最先进的机器学习算法, 在处理石油领域非线性和多维数复杂问题具有优势。以鄂尔多斯盆地姬塬地区长7段致密砂岩为研究对象, 将平方指数(SE)和马特恩(Matern)函数作为高斯过程回归模型中两个协方差函数, 通过高压压汞测试的孔隙度、未饱和汞体积比、门槛压力和分形维数来预测致密砂岩的绝对渗透率, 并结合误差分析来研究不同协方差模型预测渗透率的效果。结果表明, 马特恩协方差(Matern)模型的相对误差均值(MMRE)、均方根误差(RMSE)、标准偏差(STD)分别为32%, 0.16和0.57, 准确度较高, 尤其当渗透率小于0.1×10-3 μm2时, 马特恩协方差(Matern)模型精度明显好于平方指数协方差(SE)模型和Winland经验公式。致密砂岩用马特恩模型预测渗透率精度更高。此外, 敏感性分析表明孔隙度对渗透率正影响最大, 门槛压力对渗透率负影响最大; 杠杆值和标准化残差证明高斯过程回归模型预测渗透率的有效性。综上, 马特恩协方差(Matern)模型对渗透率小于0.1×10-3 μm2致密砂岩适用性好, 对微纳米级孔喉发育的致密砂岩勘探评价有重要意义。

     

  • 图 1  研究区位置及长7段油层组特征(研究区构造位置据文献[15]修改,地层柱状图据文献[16]修改)

    Figure 1.  Location of the study area and characteristics of the reservoir of the Member-7 of the Yanchang Formation

    图 2  GPR模型误差参数统计

    Figure 2.  Statistics of errors in GPR models

    图 3  GPR模型实验值和预测值的逐点对比图

    Figure 3.  Point-by-point comparison of the experimental and estimated data for GPR methods

    图 4  GPR模型实验值与预测值散点图

    Figure 4.  Cross plots of experimental and estimated data of GPR model

    图 5  GPR模型的相对偏差分布图

    Figure 5.  Relative deviation distribution of the GPR model

    图 6  GPR模型与经验公式计算渗透率比较

    Figure 6.  Comparison of the permeabilities calculated by the GPR models with empirical-formula based models

    图 7  Matern模型各参数的敏感性分析

    Figure 7.  Sensitivity analysis of the input parameters in the Matern model

    图 8  GPR模型杠杆值与残差分布图

    Figure 8.  Distributions of leverage values and standardized residuals of the GPR model

    表  1  致密砂岩样品参数统计表

    Table  1.   Statistics of the parameters of tight sandstone samples

    参数 最小值 最大值 平均值 标准偏差
    孔隙度/% 7.92 17.10 11.37 2.50
    未饱和汞体积比/% 1.07 37.18 11.30 5.3
    分形维数 2.30 3.05 2.68 0.16
    门槛压力/MPa 0.28 2.91 1.91 0.59
    渗透率/10-3 μm2 0.008 1.579 0.286 0.343
    下载: 导出CSV

    表  2  GPR模型与经验公式误差统计

    Table  2.   Statistics of errors of the GPR models and empirical-formula based models

    模型 MMRE RMSE STD
    平方指数协方差 0.75 0.29 3.02
    Matern协方差 0.32 0.16 0.57
    Winland经验公式 1.03 0.16 0.80
    下载: 导出CSV
  • [1] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm

    Yao J L, Deng X Q, Zhao Y D, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm
    [2] 王勇杰, 王昌杰. 低渗透多孔介质中气体滑脱行为研究[J]. 石油学报, 1995, 16(3): 101-105. doi: 10.3321/j.issn:0253-2697.1995.03.008

    Wang Y J, Wang C J. A research of gas slip in low permeability porous media[J]. ACTA Petrolei Sinica, 1995, 16(3): 101-105(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1995.03.008
    [3] 田景春, 刘伟伟, 王峰, 等. 鄂尔多斯盆地高桥地区上古生界致密砂岩储层非均质性特征[J]. 石油与天然气地质, 2014, 35(2): 183-189. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402003.htm

    Tian J C, Liu W W, Wang F, et al. Heterogeneity of the Paleozoic tight sandstone reservoirs in Gaoqiao area of Ordos Basin[J]. Oil & Gas Geology, 2014, 35(2): 183-189(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402003.htm
    [4] Swanson B F. A simple correlation between permeabilities and mercury capillary pressures[J]. Journal of Petroleum Technology, 1981, 33(12): 2498-2504. doi: 10.2118/8234-PA
    [5] Jennings J B. Capillary pressure techniques application to exploration and development geology[J]. AAPG Bulletin, 1987, 71(10): 1196-1209.
    [6] Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curves for sandstones[J]. AAPG Bulletin, 1992, 76(2): 191-198.
    [7] 王伟, 丁黎, 陈小东, 等. 一种改进的通过压汞来计算致密砂岩渗透率经验方法: 以鄂尔多斯盆地姬塬地区长7致密砂岩为例[J]. 地质科技情报, 2018, 37(4): 153-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htm

    Wang W, Ding L, Chen X D, et al. An improved empirical permeability estimator from mercury injection for tight sandstone: A case of Chang 7 tight sandstone in Jiyuan area of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2018, 37(4): 153-157(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htm
    [8] Lai J, Wang G. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J]. Journal of Natural Gas Science & Engineering, 2015, 24: 185-96.
    [9] Negash B M, Yaw A D. 基于人工神经网络的注水开发油藏产量预测[J]. 石油勘探与开发, 2020, 47(2): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002016.htm

    Negash B M, Yaw A D. Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection[J]. Petroleum Exploration and Development, 2020, 47(2): 357-365(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002016.htm
    [10] Saemi M, Ahmadi M, Varjani A Y. Design of neural networks using genetic algorithm for the permeability estimation of the reservoir[J]. Journal of Petroleum Science and Engineering, 2007, 59(1/2): 97-105.
    [11] Alireza R, Alireza B, Mohammadi A H, et al. Rigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: Smart modeling and correlation development[J]. Fuel, 2019, 236: 110-123. doi: 10.1016/j.fuel.2018.08.136
    [12] 李俭川, 秦国军, 温熙森, 等. 神经网络学习算法的过拟合问题及解决方法[J]. 振动·测试与诊断, 2002, 22(4): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200204002.htm

    Li J C, Qin G J, Wen X S, et al. Over-fitting in neural network learning algorithms and its solving strategies[J]. Journal of Vibration, Measurement & Diagnosis, 2002, 22(4): 16-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200204002.htm
    [13] Asante-Okyere S, Shen C, Yao Y Z, et al. Investigating the predictive performance of Gaussian process regression in evaluating reservoir porosity and permeability[J]. Energies, 2018, 11(12): 1-13.
    [14] 付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5): 601-614. doi: 10.3969/j.issn.1672-7703.2019.05.007

    Fu J H, Niu X B, Dan W D, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.007
    [15] Yang Y, Li W, Ma L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: A multicycle cratonic basin in Central China[J]. AAPG Bulletin, 2005, 89(2): 255-269. doi: 10.1306/10070404027
    [16] Wu H, Zhang C, Ji Y, et al. Pore throat characteristics of tight sandstone of Yanchang Formation in eastern Gansu, Ordos Basin[J]. Petroleum Research, 2018, 3(1): 33-43. doi: 10.1016/j.ptlrs.2017.11.001
    [17] 吴浩, 刘锐娥, 纪友亮, 等. 致密气储层孔喉分形特征及其与渗流的关系: 以鄂尔多斯盆地下石盒子组盒8段为例[J]. 沉积学报, 2017, 35(1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701015.htm

    Wu H, Liu R E, Ji Y L, et al. Fractal characteristics of pore-throat of tight gas reservoirs and its relation with percolation: A case from He 8 Member of the Permian Xiashihezi Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(1): 151-162(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701015.htm
    [18] 孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htm

    Sun B, Yao H T, Liu T. Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(29): 104-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htm
    [19] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm

    He Z K, Liu G B, Zhao X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm
    [20] 梁智, 孙国强, 俞娜燕, 等. 基于高斯过程回归和粒子滤波的短期风速预测[J]. 太阳能学报, 2020, 41(3): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htm

    Liang Z, Sun G Q, Yu N Y, et al. Short-term wind speed forecasting based on Gaussian process regression and particle filter[J]. Acta Energiae Sdoris Sinica, 2020, 41(3): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htm
    [21] 韩峰, 储可宽, 张熠, 等. 西北太平洋双台风引导气流的伴随敏感性分析[J]. 南京大学学报: 自然科学, 2020, 56(5): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202005003.htm

    Han F, Chu K K, Zhang Y, et al. The adjoint-derived sensitivity analysis of the steering flow of binary in the western North Pacific[J]. Journal of Nanjing University: Nature Science, 2020, 56(5): 35-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202005003.htm
    [22] 曾羽佳, 欧阳传湘, 曾庆伟, 等. 超低界面张力体系对低渗岩心非线性渗流规律的影响[J]. 地质科技通报, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027

    Zeng Y J, Ouyang C X, Zeng Q W, et al. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0027
    [23] 李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60. doi: 10.19509/j.cnki.dzkq.2021.0404

    Li Z, Ye J R, Cao Q, et al. Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 49-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0404
    [24] Chok N S. Pearson's versus Spearman's and Kendall's correlation coefficients for continuous data[D]. Pittsburgh: University of Pittsburgh, 2010.
    [25] 王敬, 赵卫, 刘慧卿, 等. 缝洞型碳酸盐岩油藏注水井间干扰特征及其影响因素[J]. 石油勘探与开发, 2020, 47(5): 990-999, 1051. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005016.htm

    Wang J, Zhao W, Liu H Q, et al. Inter-well interferences and their influencing factors during water flooding in fractured-vuggy carbonate reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5): 990-999, 1051(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005016.htm
    [26] 王伟, 宋源娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30. doi: 10.19509/j.cnki.dzkq.2021.0402

    Wang W, Song Y J, Huang J, et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0402
    [27] Gramatica P. Principles of QSAR models validation: Internal and external[J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701.
    [28] Hoaglin D C, Welsch R E. The hat matrix in regression and anova[J]. American Statistician, 1978, 32(1): 17-22.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回