留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乌石凹陷M油田低对比度油藏成因机理及渗透率评价

陈嵘 胡向阳 袁伟 张顺超 杨毅

陈嵘, 胡向阳, 袁伟, 张顺超, 杨毅. 乌石凹陷M油田低对比度油藏成因机理及渗透率评价[J]. 地质科技通报, 2022, 41(4): 12-20. doi: 10.19509/j.cnki.dzkq.2022.0126
引用本文: 陈嵘, 胡向阳, 袁伟, 张顺超, 杨毅. 乌石凹陷M油田低对比度油藏成因机理及渗透率评价[J]. 地质科技通报, 2022, 41(4): 12-20. doi: 10.19509/j.cnki.dzkq.2022.0126
Chen Rong, Hu Xiangyang, Yuan Wei, Zhang Shunchao, Yang Yi. Genetic mechanism and permeability evaluation of low contrast oil reservoirs in M Oilfield of Wushi Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 12-20. doi: 10.19509/j.cnki.dzkq.2022.0126
Citation: Chen Rong, Hu Xiangyang, Yuan Wei, Zhang Shunchao, Yang Yi. Genetic mechanism and permeability evaluation of low contrast oil reservoirs in M Oilfield of Wushi Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 12-20. doi: 10.19509/j.cnki.dzkq.2022.0126

乌石凹陷M油田低对比度油藏成因机理及渗透率评价

doi: 10.19509/j.cnki.dzkq.2022.0126
基金项目: 

中海石油(中国)有限公司重大项目"南海西部油田上产2000万元关键技术研究"项目 CNOOC-KJ135ZDXM38ZJ01ZJ

详细信息
    作者简介:

    陈嵘(1985-), 女, 高级工程师, 主要从事测井资料综合解释以及储层参数精细研究工作。E-mail: chenrong1@cnooc.com.cn

  • 中图分类号: P618.13

Genetic mechanism and permeability evaluation of low contrast oil reservoirs in M Oilfield of Wushi Sag

  • 摘要:

    乌石凹陷M油田主力油组砂体规模较大, 岩性主要为含砾中粗砂岩和砂砾岩, 其次为细砂岩。砂砾岩油层由于受特殊沉积和成岩作用影响, 浅层油层表现为高阻特征, 中深层部分油层电阻率与水层相差不大, 为测井流体性质识别及渗透率定量评价带来较大困难。以核磁、压汞、铸体薄片等实验资料为基础, 从微观研究高阻油层与低对比度油层储层特征的差异, 并且将储层按粒间孔、混合孔、铸模孔分为3类, 建立了M油田储层类型划分标准及渗透率预测模型。结果表明: 孔隙结构的复杂性造成的高束缚水饱和度是导致区域低对比度油层形成的主要原因; 储层分类后渗透率计算精度明显提高, 为油田开发方案的制定与实施及钻后评价奠定了坚实的基础。

     

  • 图 1  乌石凹陷M油田高阻油层(a)与低对比度油层(b)电阻率曲线响应特征

    GR为自然伽马曲线(GAPI);CAL为井径曲线(in);SEDP为电阻率曲线(Ω·m);DTC为声波(μs/ft);TNPH为中子(%);SBD2为密度(g/cm3)

    Figure 1.  Characteristics of the resistivity logging curves of high-resistivity and low-contrast reservoirs in M Oilfield of Wushi Sag

    图 2  高阻油层与低对比度油层毛管压力曲线与孔喉半径分布特征

    Figure 2.  Characteristics of the capillary pressure curves of high resistivity and low contrast reservoirs

    图 3  高阻油层与低对比度油层薄片图像、核磁T2谱特征

    Figure 3.  Characteristics of thin section images and NMR T2 distributions of high resistivity and low contrast reservoirs

    图 4  M油田L3段不同储层类型特征

    Figure 4.  Characteristics of different types of reservoirs in the L3 layer of M Oilfield, Wushi Sag

    图 5  基于孔隙结构的渗透率预测模型

    Figure 5.  Permeability prediction model based pore structure

    图 6  储层分类前后预测渗透率-岩心分析渗透率对比图

    Figure 6.  Comparison of the predicted permeability and core analysis permeability before and after reservoir classification

    图 7  Z井渗透率预测模型处理后成果图

    Figure 7.  Permeability prediction results of the proposed model in Well Z

  • [1] 刘冲, 朱定军, 苏文辉, 等. 乌石凹陷流沙港组成岩作用及其孔隙演化[J]. 地质与资源, 2013, 22(5): 426-430. doi: 10.3969/j.issn.1671-1947.2013.05.015

    Liu C, Zhu D J, Su W H, et al. Diagenesis and pore evolution of the Liushagang formation in wushi sag[J]. Geology and resources, 2013, 22(5): 426-430(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2013.05.015
    [2] 曾小明, 邹明生, 张辉, 等. 北部湾盆地乌石凹陷东区流沙港组三段储层物性主控因素及分布规律[J]. 石油实验地质, 2016, 38(6): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606009.htm

    Zeng X M, Zou M S, Zhang H, et al. Main controls on the distribution of the 3rd member of Liushagang Formation in eastern Wushi Sag, Beibu Gulf Basin[J]. Petroleum Geology & Experiment, 2016, 38(6): 757-764(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606009.htm
    [3] 彭志春, 杨丽, 汪新光, 等. 北部湾盆地乌石17-X油田流沙港组三段砂砾岩储层物性主控因素研究[J]. 科学技术与工程, 2017, 17(10): 6-11. doi: 10.3969/j.issn.1671-1815.2017.10.002

    Peng Z C, Yang L, Wang X G, et al. The key control factors study on glutenite physical property of Liushagang Ⅲ, Wushi 17-X oil field of Beibu Gulf Basin[J]. Science Technology and Engineering, 2017, 17(10): 6-11(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2017.10.002
    [4] 吴金龙, 孙建孟, 朱家俊, 等. 济阳坳陷低阻油层微观成因机理的宏观地质控制因素研究[J]. 中国石油大学学报: 自然科学版, 2006, 30(3): 22-25. doi: 10.3321/j.issn:1000-5870.2006.03.005

    Wu J L, Sun J M, Zhu J J, et al. Study on macro-geologic control genesis of micro-geological causes in low-resistivity oil layer of Jiyang Depression[J]. Journal of China University of Petroleum, 2006, 30(3): 22-25(in Chinese with English abstract). doi: 10.3321/j.issn:1000-5870.2006.03.005
    [5] 王丽, 袁伟, 丁磊, 等. 基于常规测井资料的储层流体识别方法[J]. 地质科技情报, 2018, 37(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802033.htm

    Wang L, Yuan W, Ding L, et al. Reservoir fluid identification based on normal logging data[J]. Geological Science and Technology Information, 2018, 37(3): 241-245(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802033.htm
    [6] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions, AIME, 1942, 146: 54-62. doi: 10.2118/942054-G
    [7] Adrian C, Claudine D, Etienne B. Pore microgeometry analysis in low-resistivity sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2002, 35(3/4): 205-232.
    [8] 于红岩, 李洪奇, 郭兵, 等. 基于成因机理的低阻油层精细评价方法[J]. 吉林大学学报: 地球科学版, 2012, 42(2): 335-342. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202008.htm

    Yu H Y, Li H Q, Guo B, et al. Low-resistivity oil layers fine evaluation approaches based on mechanism[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(2): 335-343(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202008.htm
    [9] 骆玉虎, 何胜林, 谭伟, 等. 北部湾盆地砂砾岩低阻油层成因及饱和度计算方法[J]. 地质科技情报, 2019, 38(6): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906006.htm

    Luo Y H, He S L, Tan W, et al. Genetic mechanism and saturation calculation method of low resistivity sandy conglomerate oil layers in Beibu Gulf Basin[J]. Geological Science and Technology Information, 2019, 38(6): 33-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906006.htm
    [10] 黄月银, 姚光庆, 成涛, 等. 文昌13-1/2油田珠江一段细粒储层沉积相及低阻油层性质[J]. 地质科技情报, 2016, 35(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602033.htm

    Huang Y Y, Yao G Q, Cheng T, et al. Geological origin and genesis of low-resistivity oil layers in Wenchang13-1/2 Oilfield[J]. Geological Science and Technology Information, 2016, 35(2): 161-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602033.htm
    [11] 张爱华. 辽河油区低阻油气层成因机理及研究思路[J]. 特种油气藏, 2004, 11(6): 37-39. doi: 10.3969/j.issn.1006-6535.2004.06.011

    Zhang A H. Genetic mechanism and study method for low resistivity reservoirs in Liaohe oil Province[J]. Special Oil and Gas Reservoirs, 2004, 11(6): 37-39(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2004.06.011
    [12] 游瑜春, 刘伟兴, 谭振华, 等. 苏北盆地溱潼凹陷低阻油气层成因研究[J]. 天然气地球科学, 2009, 20(6): 941-944. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200906018.htm

    You Y C, Liu W X, Tan Z H, et al. Genesis of low-resistivity reservoirs in Qintong Sag, Subei Basin[J]. Natural Gas Geoscience, 2009, 20(6): 941-944(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200906018.htm
    [13] 王伟, 宋渊娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30. doi: 10.19509/j.cnki.dzkq.2021.0402

    Wan W, Song Y J, Huang J, et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0402
    [14] 汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报, 2021, 40(4): 93-103. doi: 10.19509/j.cnki.dzkq.2021.0429

    Wang X G, Zhang C, Zhang H, et al. Classification and evaluation of low-permeability sand reservoir based on micro-pore structure[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 93-103(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0429
    [15] Wang J M, Zhang S. Pore structure differences of the extra-low permeability sandstone reservoirs and the causes of low resistivity oil layers: A case study of Block Yanwumao in the middle of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(2): 273-280. doi: 10.1016/S1876-3804(18)30030-2
    [16] Lai J, Wang G W, Wang Z Y, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. doi: 10.1016/j.earscirev.2017.12.003
    [17] 王赛英, 赵冠军, 张萍, 等. 低阻油层形成机理及测井识别方法研究[J]. 特种油气藏, 2010, 17(4): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201004002.htm

    Wang S Y, Zhao G J, Zhang P, et al. Formation mechanism and logging identification of low resistivity reservoirs[J]. Special Oil and Gas Reservoirs, 2010, 17(4): 10-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201004002.htm
    [18] 张冲, 张超谟, 张占松, 等. 低渗透砂砾岩储层饱和度测井评价方法及其应用: 以王府断陷小城子地区登娄库组储层为例[J]. 西安石油大学学报: 自然科学版, 2016, 31(2): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201602002.htm

    Zhang C, Zhang C M, Zhang Z S, et al. Calculation method of water saturation of low-permeability gluteniter eservoir and its application: Taking the reservoir of Denglouku Formation in Xiaochengzi area, Wangfu Fault[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2016, 31(2): 11-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201602002.htm
    [19] 陈杰, 周改英, 赵喜亮, 等. 储层岩石孔隙结构特征研究方法综述[J]. 特种油气藏, 2005, 12(4): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200504002.htm

    Chen J, Zhou G Y, Zhao X L, et al. Overview of study methods of reservoir rock pore structure[J]. Special Oil and Gas Reservoirs, 2005, 12(4): 11-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200504002.htm
    [20] 赵新伟, 许红. 基于微焦X-CT的碳酸盐岩孔隙结构精细表征[J]. 特种油气藏, 2016, 23(1): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201601029.htm

    Zhao X W, Xu H. Microfocus X-CT based fine characterization of carbonate pore texture[J]. Special Oil and Gas Reservoirs, 2016, 23(1): 127-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201601029.htm
    [21] 朱林奇, 张冲, 何小菊, 等. 基于动态孔隙结构效率的核磁共振测井预测渗透率方法[J]. 新疆石油地质, 2015, 36(5): 607-611. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201505022.htm

    Zhu L Q, Zhang C, He X J, et al. NMR logging permeability prediction method based on dynamic pore structure efficiency[J]. Xinjiang Petroleum Geology, 2015, 36(5): 607-611(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201505022.htm
    [22] 秦瑞宝, 张磊, 周改英. 潜山油田裂缝孔隙度和渗透率测井评价新方法[J]. 中国海上油气, 2015, 27(3): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201503005.htm

    Qin R B, Zhang L, Zhou G Y. A new logging method for evaluating fracture porosity and permeability in buried hill oil fields[J]. China Offshore Oil and Gas, 2015, 27(3), 31-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201503005.htm
    [23] 宋子齐, 杨红刚, 孙颖, 等. 利用岩石物理相分类研究特低渗透储层参数建模[J]. 断块油气田, 2010, 17(7): 672-677. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201006009.htm

    Song Z Q, Yang H G, Sun Y, et al. Study on parametric modeling of ultra-low permeability reservoir with petrophysicalfaciesclassification[J]. Fault-Block Oil & Gas Field, 2010, 17(7): 672-677(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201006009.htm
    [24] 石玉江, 张海涛, 侯雨庭, 等. 基于岩石物理相分类的测井储层参数精细解释建模[J]. 测井技术, 2005, 29(4): 328-332. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200504013.htm

    Shi Y J, Zhang H T, Hou Y T, et al. The fine logging interpretation method based on petrophysical faces[J]. Well Logging Technology, 2005, 29(4): 328-332(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200504013.htm
    [25] 景成, 宋子齐, 蒲春生, 等. 基于岩石物理相分类确定致密气储层渗透率: 以苏里格东区致密气储层渗透率研究为例[J]. 地球物理学进展, 2013, 28(6), 3222-3230. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201306049.htm

    Jing C, Song Z Q, Pu C S, et al. Refined permeability of tight gas reservoir based on petrophysical facies classification: Taking the study of tight gas reservoir permeability in the eastern of Sulige for an example[J]. Progress in Geophysics, 2013, 28(6), 3222-3230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201306049.htm
    [26] Swanson B F. Asimple correlation between permeability and capillary pressure[J]. Journal of Petroleum Technology, 1981, 67(11): 2498-2503.
  • 加载中
图(7)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回