Hydrocarbon migration characteristics and its controlling effect on hydrocarbon accumulation of weathering crust in slope area of Liaoxi Uplift
-
摘要:
随着勘探程度的提高, 小型复杂断块圈闭已成为当前凸起区油气勘探的重点领域, 为了明确辽西凸起断块圈闭油气差异富集的原因, 利用三维地震、测录井、薄片等数据资料, 通过三维流线定量模拟的方法, 分析凸起斜坡区潜山顶面风化壳特征, 建立"壳-断"耦合油气运移模式, 刻画斜坡区油气优势运移路径, 从而明确风化壳运移对凸起断块油气差异富集的控制作用。结果表明: ①研究区潜山历经多期构造运动, 且潜山岩性主要为下古生界碳酸盐岩和太古界花岗岩, 岩性性质较脆, 易被风化剥蚀, 风化壳溶蚀孔隙及构造裂缝普遍发育, 且分布稳定, 形成斜坡区油气侧向长距离运移的主要通道; ②斜坡中带受反向断层控制形成断隆构造, 油气沿风化壳的运移受斜坡断隆带遮挡, 形成"壳-断"耦合油气运移模式, 断隆带断距大小控制风化壳油气侧向运移能力; ③利用三维流线定量模拟的方法, 刻画出研究区四级油气优势运移通道, 明确不同级别油气运移通道对凸起断块油气富集程度的控制作用。该研究成果有效指导辽西凸起油气勘探实践, 并填补了富油凹陷成熟凸起区油气成藏认识及研究方法。
Abstract:With the improvement of the exploration degree, small complex fault block traps have become the key field of oil and gas exploration in the current uplift area. To clarify the reasons for the differential enrichment of oil and gas in the fault block trap in the West Liaoning uplift, the characteristics of weathering crust on the top of the buried hill in the uplift slope area are analysed by using three-dimensional seismic, logging, thin section and other data through three-dimensional streamline quantitative simulation. The "crust-fault" coupling migration model is established to describe the dominant migration path of oil and gas in the slope area to clarify the control effect of hydrocarbon migration along weathered crust on the differential enrichment of oil and gas in the convex fault block. The results show that ① the buried hill in the study area has experienced multistage tectonic movements, and the lithology of the buried hill is mainly lower Paleozoic carbonate rock and Archean granite. The lithology is brittle and easily weathered and denuded. The denudation pores and structural fractures of the weathering crust are widely developed and stably distributed, forming the main channel of lateral long-distance migration of oil and gas in the slope area. ② The middle zone of the slope is controlled by reverse faults to forma fault uplift structure. The migration of oil and gas along the weathering crust is blocked by the slope fault uplift zone, forming a "crust-fault" coupling oil and gas migration model. The fault throw of the fault uplift zone controls the lateral migration ability of oil and gas in the weathering crust. ③ Using the method of three-dimensional streamline quantitative simulation, the four-level dominant oil and gas migration channels in the study area are characterized, and the control effect of different levels of oil and gas migration channels on the degree of oil and gas enrichment in convex fault blocks is clarified. The research results effectively guide the practice of oil and gas exploration in the Liaoxi Uplift and fill the gap of the understanding and research method of oil and gas accumulation in mature uplift areas of oil-rich sags.
-
-
[1] 夏庆龙. 渤海油田近10年地质认识创新与油气勘探发现[J]. 中国海上油气, 2016, 28(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201603001.htmXia Q L. Innovation of geological theories and exploration discoveries in Bohai oilfields in the last decade[J]. China Offshore Oil and Gas, 2016, 28(3): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201603001.htm [2] 薛永安, 柴永波, 周园园. 近期渤海海域油气勘探的新突破[J]. 中国海上油气, 2015, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201501001.htmXue Y A, Chai Y B, Zhou Y Y. Recent new breakthroughs in hydrocarbon exploration in Bohai sea[J]. China Offshore Oil and Gas, 2015, 27(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201501001.htm [3] 于彪, 刘建良, 杨贵丽, 等. 渤海海域东部不同富油凹陷烃源岩生烃特征差异及意义[J]. 地质科技通报, 2021, 40(4): 104-114. doi: 10.19509/j.cnki.dzkq.2021.0407Yu B, Liu J L, Yang G L, et al. Hydrocarbon generation characteristics and signification of source rock in different oil rich depressions in the eastern part of the Bohai Sea[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 104-114(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0407 [4] 康海亮, 林畅松, 牛成民. 渤海西部海域沙垒田凸起古近系边缘断裂构造样式与沉积充填响应[J]. 天然气地球科学, 2017, 28(2): 254-261. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702008.htmKang H L, Lin C S, Niu C M. Faulting structure styles and their depositional filling response of the Paleogene margin of Shaleitian uplift, western Bohai Sea area[J]. Natural Gas Geoscience, 2017, 28(2): 254-261(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702008.htm [5] 郭涛, 李慧勇, 石文龙, 等. 渤海海域埕北低凸起及周围地区构造沉积特征与有利勘探目标[J]. 油气地质与采收率, 2015, 22(2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201502005.htmGuo T, Li H Y, Shi W L, et al. Tectonic-sedimentary characteristics and favorable exploration targets in the Chengbei low uplift and neighboring regions in Bohai Sea area[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(2): 28-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201502005.htm [6] 黄雷. 走滑作用对渤海凸起区油气聚集的控制作用: 以沙垒田凸起为例[J]. 地学前缘, 2015, 22(3): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503007.htmHuang L. The control of hydrocarbon accumulation by strike-slip motion within the Bohai Sea Rise: A case study from Shaleitian Uplift[J]. Earth Science Frontiers, 2015, 22(3): 68-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503007.htm [7] 李慧勇, 肖述光, 李飞, 等. 渤海郯庐断裂西支构造特征及对潜山形成的控制作用[J]. 地质科技通报, 2021, 40(5): 33-41. doi: 10.19509/j.cnki.dzkq.2021.0503Li H Y, Xiao S G, Li F, et al. Structural characteristics of the Western Branch of the Tanlu fault in Bohai Sea and its control on the formation of buried hills[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 33-41(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0503 [8] 韩国猛, 牟连刚, 董越崎, 等. 歧口凹陷板桥斜坡区新生代断裂特征及油气地质意义[J]. 地质科技通报, 2020, 39(6): 1-9. doi: 10.19509/j.cnki.dzkq.2020.0603Han G M, Mu L G, Dong Y Q, et al. Cenozoic fault characteristics and petroleum geological significance in Banqiao slope area of Qikou Depression[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 1-9(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0603 [9] 姜振学, 庞雄奇, 曾溅辉, 等. 油气优势运移通道的类型及其物理模拟实验研究[J]. 地学前缘, 2005, 12(4): 507-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504026.htmJiang Z X, Pang X Q, Zeng J H, et al. Research on types of the dominant migration pathways and their physical simulation experiments[J]. Earth Science Frontiers, 2005, 12(4): 507-516(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504026.htm [10] 康琳, 吕丁友, 尚锁贵, 等. 辽东湾坳陷新生代构造变形特征及营潍断裂带的表现[J]. 石油学报, 2019, 40(增刊2): 79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2010.htmKang L, Lü D Y, Shang S G, et al. Characteristics of Cenozoic tectonic deformation and performance of Yingwei fault zone in Liaodongwan depression[J]. Acta Petrolie Sinica, 2019, 40(S2): 79-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2010.htm [11] 李伟, 郭甜甜, 吴智平, 等. 平衡剖面方法在伸展、走滑作用叠加、配比关系分析中的应用: 以渤海海域辽东湾坳陷为例[J]. 地质论评, 2019, 65(6): 1501-1514. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906022.htmLi W, Guo T T, Wu Z P, et al. Application of balanced cross-section method in extension, strikeslip superposition and ratio analysis: A case study of Liaodong Bay depression, Bohai Bay Basin[J]. Geological Review, 2019, 65(6): 1501-1514(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906022.htm [12] 李潍莲, 刘震, 刘俊榜, 等. 辽东湾地区辽西低凸起油气田成藏地质条件的差异[J]. 石油与天然气地质, 2010, 31(5): 664-670. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201005019.htmLi W L, Liu Z, Liu J B, et al. Differences of geological conditions of hydrocarbon accumulation among fields in the Liaoxi Low upfit, the Liaodong Bay[J]. Oil & Gas Geology, 2010, 31(5): 664-670(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201005019.htm [13] 薛永安, 韦阿娟, 彭靖淞, 等. 渤海湾盆地渤海海域大中型油田成藏模式和规律[J]. 中国海上油气, 2016, 28(3): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201603002.htmXue Y A, Wei A J, Peng J S, et al. Accumulation models and regularities of large-middle scale oilfields in Bohai Sea, Bohai Bay Basin[J]. China Offshore Oil and Gas, 2016, 28(3): 10-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201603002.htm [14] 江尚昆, 吴昊明, 曾金昌, 等. 辽西低凸起中段潜山油气差异富集及主控因素[J]. 特种油气藏, 2016, 23(6): 55-59, 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201606012.htmJiang S K, Wu H M, Zeng J C, et al. Hydrocarbon difference enrichment and main-controlling factors of buried-hill reservoir in the central of Liaoxi Low-Salient[J]. Special Oil and Gas Reservoir, 2016, 23(6): 55-59, 143-144(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201606012.htm [15] 田德瑞, 牛成民, 王德英, 等. 渤海海域辽西凸起锦州A构造原油地球化学特征及油源分析[J]. 海洋地质前沿, 2019, 35(6): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201906003.htmTian D R, Niu C M, Wang D Y, et al. Geochemical characteristics and origin of crude oil from JZ-A structure on the Liaoxi Uplift, Bohai Sea[J]. Marine Geology Frontiers, 2019, 35(6) : 20-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201906003.htm [16] 田立新, 王冰洁. 渤海海域辽中凹陷LD油田油源断层运移能力定量评价及运移模式[J]. 石油与天然气地质, 2018, 39(3): 567-577. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803015.htmTian L X, Wang B J. Quantitative evaluation of source tapping fault for oil and establishment of its migration model in LD Oilfield in the Liaozhong Sag, Bohai Sea[J]. Oil & Gas Geology, 2018, 39(3): 567-577(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803015.htm [17] 薛永安, 杨海风, 黄江波, 等. 渤海海域浅层油气运移成藏理论技术创新与勘探突破[J]. 中国海上油气, 2020, 32(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202002002.htmXue Y A, Yang H F, Huang J B, et al. Theoretical and technological innovation in the shallow hydrocarbon migration and accumulation of the Bohai sea and the exploration breakthrough[J]. China Offshore Oil and Gas, 2020, 32(2): 14-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202002002.htm [18] 薛永安, 牛成民, 王德英, 等. 渤海海域浅层油气运移新认识与勘探新进展[J]. 石油学报, 2019, 40(增刊2): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2005.htmXue Y A, Niu C M, Wang D Y, et al. New understanding of shallow hydrocarbon migration and new exploration progress in the Bohai Sea[J]. Acta Petrolei Sinica, 2019, 40(S2): 29-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2005.htm [19] 王德英, 薛永安, 于海波, 等. 渤中凹陷斜坡类型与新近系油气成藏特征[J]. 中国海上油气, 2019, 31(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201904002.htmWang D Y, Xue Y A, Yu H B, et al. Slope types and Neogene hydrocarbon accumulation characteristics of Bozhong Sag in Bohai sea[J]. China Offshore Oil and Gas, 2019, 31(4): 9-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201904002.htm [20] 隆雨辰, 李俊, 王志章, 等. 综合蚂蚁体及曲率属性的断裂识别方法及应用[J]. 油气藏评价与开发, 2017, 7(4): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201704002.htmLong Y C, Li J, Wang Z Z, et al. Fracture identification methods and applications of integrated ant body and curvature attribute[J]. Reservoir Evaluation and Development, 2017, 7(4): 6-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201704002.htm [21] 王军, 李艳东, 甘利灯. 基于蚂蚁体各向异性的裂缝表征方法[J]. 石油地球物理勘探, 2013, 48(5): 763-769. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201305016.htmWang J, Li Y D, Gan L D. Fracture characterization based on azimuthal anisotropy of ant-tracking attribute volumes[J]. Oil Geophysical Prospecting, 2013, 48(5): 763-769(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201305016.htm [22] 吕丁友, 杨明慧, 周心怀, 等. 辽东湾坳陷辽西低凸起潜山构造特征与油气聚集[J]. 石油与天然气地质, 2009, 30(4): 490-496. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904020.htmLü D Y, Yang M H, Zhou X H, et al. Structral characteristics hydrocarbon accumulation in the buried hills of the Liaoxi Low Salient, the Liaodong Bay Depression[J]. Oil & Gas Geology, 2009, 30(4): 490-495 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904020.htm [23] 郭秋麟, 刘继丰, 陈宁生, 等. 三维油气输导体系网格建模与运聚模拟技术[J]. 石油勘探与开发, 2018, 45(6): 947-959. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806004.htmGuo Q L, Liu J F, Chen N S, et al. Mesh model building and migration and accumulation simulation of 3D hydrocarbon carrier system[J]. Petroleum Exploration and Development, 2018, 45(6): 947-959(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806004.htm [24] 常波涛, 于开平, 孙连浦, 等. 基于流体势约束的潜山油气二次运移优势方向选择: 以胜利油田桩海地区古生界潜山为例[J]. 地质科技情报, 2005, 24(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200502009.htmChang B T, Yu K P, Sun L P, et al. Preferred directions of petroleum secondary migration constrained by fluid potential in buried hills: An example from Paleozoic buried hills in Zhuanghai area, Shengli oilfield[J]. Geologiocal Science and Technology Information, 2005, 24(2): 39-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200502009.htm