留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南堡凹陷古近系沙河街组沉积环境和物源: 来自微量和稀土元素地球化学的证据

静禹钱 雷闯 刘克栋 李振华

静禹钱, 雷闯, 刘克栋, 李振华. 南堡凹陷古近系沙河街组沉积环境和物源: 来自微量和稀土元素地球化学的证据[J]. 地质科技通报, 2023, 42(1): 350-359. doi: 10.19509/j.cnki.dzkq.2022.0131
引用本文: 静禹钱, 雷闯, 刘克栋, 李振华. 南堡凹陷古近系沙河街组沉积环境和物源: 来自微量和稀土元素地球化学的证据[J]. 地质科技通报, 2023, 42(1): 350-359. doi: 10.19509/j.cnki.dzkq.2022.0131
Jing Yuqian, Lei Chuang, Liu Kedong, Li Zhenhua. Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 350-359. doi: 10.19509/j.cnki.dzkq.2022.0131
Citation: Jing Yuqian, Lei Chuang, Liu Kedong, Li Zhenhua. Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 350-359. doi: 10.19509/j.cnki.dzkq.2022.0131

南堡凹陷古近系沙河街组沉积环境和物源: 来自微量和稀土元素地球化学的证据

doi: 10.19509/j.cnki.dzkq.2022.0131
基金项目: 

国家科技重大专项子课题 2016ZX05006-006

油气资源与探测国家重点实验室开放课题 PRP/open-2004

详细信息
    作者简介:

    静禹钱(1998-), 男, 主要从事元素地球化学研究工作。E-mail: jingyuqian1125@163.com

    通讯作者:

    雷闯(1985-), 男, 讲师, 主要从事油气地球化学和成藏机理研究工作。E-mail: leichuang119@163.com

  • 中图分类号: TE121.31

Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry

  • 摘要:

    为深入认识南堡凹陷沙河街组富有机质泥页岩形成机理, 通过详细分析微量和稀土元素地球化学特征, 对其水体沉积环境及物源进行研究。结果表明: 微量元素Li, Cs, Bi较为富集; Cr, Sn较为亏损; 其他微量元素接近于上地壳元素含量。稀土元素总量变化范围宽泛, 接近或高于大陆上地壳的平均值, 指示陆源碎屑供给较为充足。REE分配模式表现为轻稀土元素富集, 分异程度较高; 重稀土元素相对亏损, 分异程度较低。铕元素异常值(δEu)负异常明显, 铈元素异常值(δCe)基本正常。根据锶丰度和锶/钡比值的变化, 反映出沙三段沉积时期湖泊水体具有一定的分隔性, 淡水、半咸水和咸水环境共存; 沙一段沉积时期湖泊水体的连通性增强, 以半咸水环境为主。根据V/(V+Ni)、Th/U比值及δCe、铈异常指数(Ceanom)值特征, 反映出湖泊水体为分层较强的贫氧环境。源生Ba含量揭示出湖泊水体古生产力较高。通过稀土元素组合特征分析, 认为沙河街组物源主要来自燕山褶皱带于燕山期发育的花岗岩, 且混有少量沉积岩。南堡凹陷沙河街组泥页岩有机质富集程度与其古环境和古地理密切相关: 一是适宜的水体古盐度和丰富的水体营养物质适应多种浮游藻类的共同繁盛, 提高了湖泊水生有机质生产效率; 二是贫氧的水体环境减缓有机质在埋藏过程中的降解, 提高了沉积有机质保存效率。

     

  • 图 1  南堡凹陷区域位置及地质简图

    Figure 1.  Tectonic location and geologic map of Nanpu Sag

    图 2  南堡凹陷沙三段和沙一段泥岩微量元素浓度系数

    Figure 2.  Concentration coefficients of trace elements of the Es3 and Es1 mudstones in Nanpu Sag

    图 3  南堡凹陷沙河街组泥岩球粒陨石标准化稀土元素配分模式图

    Figure 3.  Chondrite-normalized REE distribution patterns of the mudstones in the Shahejie Formation in Nanpu Sag

    图 4  南堡凹陷沙河街组泥岩w(Sr)与Sr/Ba关系图

    Figure 4.  Relationship between Sr and Sr/Ba of the mudstones in the Shahejie Formation in Nanpu Sag

    图 5  南堡凹陷沙河街组泥岩w(TOC)与w(Babio)关系图

    Figure 5.  Relationship between TOC and Babio of the mudstones in the Shahejie Formation in Nanpu Sag

    图 6  南堡凹陷沙河街组泥岩δCe与δEu、(Dy/Sm)N、ΣREE质量分数关系图

    Figure 6.  Relationship between δCe and δEu, (Dy/Sm)N, ΣREE of the mudstones in the Shahejie Formation in Nanpu Sag

    图 7  南堡凹陷沙河街组泥岩w(TOC)与V/(V+Ni)、Th/U比值关系图

    Figure 7.  Relationship between TOC and V/(V+Ni), Th/U of the mudstones in the Shahejie Formation in Nanpu Sag

    表  1  南堡凹陷沙三段和沙一段泥岩元素地球化学数据

    Table  1.   Geochemical data of the Es3 and Es1 mudstones in Nanpu Sag

    表  2  古盐度微量元素判断指标[26]

    Table  2.   Trace element index for paleosalinity recognition in samples

    判断指标 淡水环境 半咸水环境 咸水环境
    w(Sr)/10-6 ≤300 (300, 500] >500
    Sr/Ba ≤0.6 (0.6, 1.0] >1.0
    下载: 导出CSV
  • [1] Alias F L, Abdullah W H, Hakimi M H, et al. Organic geochemical characteristics and depositional environment of the Tertiary Tanjong Formation-coals in the Pinangah area, onshore Sabah, Malaysia[J]. International Journal of Coal Geology, 2012, 104: 9-21. doi: 10.1016/j.coal.2012.09.005
    [2] Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4): 323-339. doi: 10.1016/j.orggeochem.2011.01.010
    [3] 李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 42(10): 1774-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710012.htm

    Li H, Lu J L, Li R L, et al. Generationpaleoenvironment and its controlling factors of lower cretaceous lacustrine hydrocarbon source rocks in Changling Depression, south Songliao Basin[J]. Earth Science, 2017, 42(10): 1774-1786 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710012.htm
    [4] 夏刘文, 曹剑, 徐田武, 等. 盐湖生物发育特征及其烃源意义[J]. 地质评论, 2017, 63(6): 1149-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706011.htm

    Xia L W, Cao J, Xu T W, et al. Development characteristics of biologies in saline lake environments and their implications for hydrocarbon source[J]. Ceological Review, 2017, 63(6): 1149-1562 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706011.htm
    [5] 袁静, 肖运凤, 董道涛, 等. 高邮凹陷深凹带戴南组古生物特征及环境意义[J]. 西南石油大学学报: 自然科学版, 2018, 40(1): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201801002.htm

    Yuan J, Xiao Y F, Dong D T, et al. Paleontological features and sedimentary environment of Dainan Formation in deep sag of Gaoyou Sag[J]. Journal of Southwest Petroleum University : Science & Technology Edition, 2018, 40(1): 11-21 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201801002.htm
    [6] 刘士磊, 王启飞, 龚莹杰, 等. 渤海海域古近纪微体化石组合特征及油气勘探意义[J]. 地层学杂志, 2012, 36(4): 700-709. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204004.htm

    Liu S L, Wang Q F, Gong Y J, et al. Paleogene microfossil assemblages from the Bohai area and their importance for the oil and gas exploration[J]. Journal of Stratigraphy, 2012, 36(4): 700-709 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204004.htm
    [7] Adegoke A K, Adegoke W H, Hakimi M H, et al. Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: Bioproductivity versus anoxia conditions[J]. Journal of Petroleum Science and Engineering, 2015, 135: 73-87. doi: 10.1016/j.petrol.2015.08.012
    [8] 张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4): 95-106.

    Zhang M L, Guo W, Shen J, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106 (in Chinese with English abstract).
    [9] Cao J, Wu M, Chen Y, et al. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J]. Chemie der Erde, 2012, 72(3): 245-252. doi: 10.1016/j.chemer.2011.12.002
    [10] Moosavirad S M, Janardhana M R, Sethumadhav M S, et al. Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, CentralIran: Provenance, source weathering and tectonic setting[J]. Chemie dre Erde, 2011, 71(3): 279-288. doi: 10.1016/j.chemer.2010.10.001
    [11] 朱志军, 陈洪德, 林良彪, 等. 川东南-湘西地区志留系小河坝组砂岩微量元素地球化学特征及意义[J]. 地质科技情报, 2010, 29(2): 24-30. doi: 10.3969/j.issn.1000-7849.2010.02.005

    Zhu Z J, Chen H D, Lin L B, et al. Signification andcharacteristic of the trace element ratios of the sandstone in Silurian Xiaoheba Formation in southeastern Sichuan Province and western Hunan Province[J]. Geological Science and Technology Information, 2010, 29(2): 24-30 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2010.02.005
    [12] 腾格尔, 刘文汇, 徐永昌, 等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200502008.htm

    Teng G R, Liu W H, Xu W C, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances In Earth Science, 2005, 20(2): 193-200 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200502008.htm
    [13] 叶加仁, 赵牛斌, 杨宝林, 等. 涠西南凹陷流沙港组烃源岩生产力及发育模式[J]. 地质科技通报, 2020, 39(1): 105-113. doi: 10.19509/j.cnki.dzkq.2020.0112

    Ye J R, Zhao N B, Yang B L, et al. Productivity and development model of source rock of the Liushagang Formation in the Weixinan Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 105-113 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0112
    [14] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508
    [15] Wang E Z, Wang Z J, Pang X Q, et al. Key factors controlling hydrocarbon enrichment in a deep petroleum system in a terrestrial rift basin—A case study of the uppermost member of the upper Paleogene Shahejie Formation, Nanpu Sag, Bohai Bay Basin, NE China[J]. Marine and Petroleum Geology, 2019, 107: 572-590. doi: 10.1016/j.marpetgeo.2019.05.027
    [16] 范泓澈, 黄志龙, 庞雄奇, 等. 南堡凹陷古近系深层烃源岩分布特征及厚度预测[J]. 油气地质与采收率, 2011, 18(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201102006.htm

    Fan H Z, Huang Z L, Pang X Q, et al. Evaluation approach and early-stage prediction on Paleogene hydrocarbon source rocks in Nanpu sag, Bohai BayBasin[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(2): 21-25 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201102006.htm
    [17] 曾棒, 刘小平, 刘国勇, 等. 陆相泥页岩层系岩相测井识别与预测: 以南堡凹陷拾场次洼为例[J]. 地质科技通报, 2021, 40(1): 69-79. doi: 10.19509/j.cnki.dzkq.2021.0103

    Zeng B, Liu X P, Liu G Y, et al. Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 69-79 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0103
    [18] 李素梅, 庞雄奇, 万中华. 南堡凹陷混源油分布与主力烃源岩识别[J]. 地球科学: 中国地质大学学报, 2011, 36(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106012.htm

    Li S M, Pang X Q, Wan Z H. Mixedoil distribution and source rock discrimination of the Nanpu Depression, Bohaibay Basin[J]. Earth Science : Journal of China University of Geosciences, 2011, 36(6): 1064-1072 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106012.htm
    [19] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
    [20] 肖龙, 欧阳成甫, 汪劲草. 冀东青龙太古宙花岗岩系地质地球化学特征[J]. 桂林冶金地质学院学报, 1994, 14(4): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX404.005.htm

    Xiao L, Ouyang C P, Wang J C. The geology and geochemistry of the Archean granitoids in Qinglong, east Hebei[J]. Journal of Guilin College of Geology, 1994, 14(4): 380-386 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX404.005.htm
    [21] 檀国平. 燕山地区含金花岗岩岩石地球化学特征[J]. 沈阳黄金学院学报, 1997, 16(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI199701003.htm

    Tan G P. Geochemical features of granites related with gold deposits in Yanshan Region[J]. Journal of Shenyang Institute of Gold Technology, 1997, 16(1): 24-29 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI199701003.htm
    [22] 李晓勇. 燕山地区中生代火山作用成因及其对深部过程的制约[D]. 广州: 中国科学院广州地球化学研究所, 2003.

    Li X Y. Mesozoic volcanism and constraint on deep geological process in Yanshan Area[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 2003 (in Chinese with English abstract).
    [23] 李伍平. 燕山造山带中生代火山岩地球化学特征及其地球动力学背景[D]. 广州: 中国科学院广州地球化学研究所, 2002.

    Li W P. Geochemical characteristics and geodynamic background of Mesozoic volcanic rocks in Yanshan orogenic belt[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 2002 (in Chinese with English abstract).
    [24] 李珍, 焦养泉, 刘春华, 等. 黄骅坳陷高柳地区重矿物物源分析[J]. 石油勘探与开发, 1998, 25(6): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK806.001.htm

    Li Z, Jiao Y Q, Liu C H, et al. Source analysis of heavy minerals in Gaoliu area, Huanghua Depression[J]. Petroleum Exploration and Development, 1998, 25(6): 5-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK806.001.htm
    [25] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
    [26] 崔滔, 焦养泉, 杜远生, 等. 黔北务正道地区铝土矿形成环境的古盐度识别[J]. 地质科技情报, 2013, 32(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htm

    Cui T, Jiao Y Q, Du Y S, et al. Analysis on paleosalinity of sedimentary environment of bauxite in Wuchuan-Zheng'an-Daozhen area, northern Guizhou Province[J]. Geological Science and Technology Information, 2013, 32(1): 46-51 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htm
    [27] 夏雪飞, 张宁, 喻建新, 等. 渤海湾盆地南堡凹陷始新世—渐新世孢粉、藻类与地层对比[J]. 微体古生物学报, 2015, 32(3): 269-284. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201503005.htm

    Xia F X, Zhang N, Yu J X, et al. Eocene-oligocene palynology and biostratigraphic correlation in the Nanpu Sag, Bohai bay basin, China[J]. Acta Micropalaeontologica Sinica, 2015, 32(3): 269-284 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201503005.htm
    [28] 刘传联, 徐金鲤. 生油古湖泊生产力的估算方法及应用实例[J]. 沉积学报, 2002, 20(1): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201023.htm

    Liu C L, Xu J L. Estimation method on productivity of oil-producing lake and a case study[J]. Acta Sedimentologica Sinica, 2002, 20(1): 144-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201023.htm
    [29] 徐博, 曾文倩, 刁慧, 等. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质, 2020, 41(3): 72-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202103008.htm

    Xu B, Zeng W Q, Diao H, et al. Trace rare earth element in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment[J]. Marine Geology & Quaternary Geology, 2020, 41(3): 72-84 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202103008.htm
    [30] Guo Y C, Pang X Q, Dong Y X, et al. Hydrocarbon generation and migration in the Nanpu Sag, Bohai Bay Basin, eastern China: Insight from basin and petroleum system modeling[J]. Journal of Asian Earth Sciences, 2013, 77: 140-150.
    [31] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environmental and geochemistry of the upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestope, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99: 65-82.
    [32] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129.
    [33] Shields G, Stille P. Diagenetic constrains on the use of cerium anomalies as paleoseawater redox proxies: An isotopic and REE study of Cambrian phosphofites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
    [34] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296: 214-219.
    [35] 董月霞, 张宁, 周海民, 等. 南堡凹陷油田古近系碎屑重矿物的物源和构造意义[J]. 地质科技情报, 2008, 27(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805003.htm

    Dong Y X, Zhang N, Zhou H N, et al. Provenances and tectonic implications paleogene terrigenous heavy minerals in Nanpu Rifted Trough, eastern Hebei Province[J]. Geological Science and Technology Information, 2008, 27(5): 7-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805003.htm
    [36] Harris N B, Freeman K H, Pancost R D, et al. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa[J]. AAPG Bulletin, 2004, 88(8): 1163-1184.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  402
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28

目录

    /

    返回文章
    返回