留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地杭锦旗地区下石盒子组致密砂岩储层孔隙结构及可动流体特征

何云 王瑞飞 张占杨 王濡岳 尹帅 何维领 陈瑞娜 肖雪

何云, 王瑞飞, 张占杨, 王濡岳, 尹帅, 何维领, 陈瑞娜, 肖雪. 鄂尔多斯盆地杭锦旗地区下石盒子组致密砂岩储层孔隙结构及可动流体特征[J]. 地质科技通报, 2023, 42(5): 94-102. doi: 10.19509/j.cnki.dzkq.2022.0134
引用本文: 何云, 王瑞飞, 张占杨, 王濡岳, 尹帅, 何维领, 陈瑞娜, 肖雪. 鄂尔多斯盆地杭锦旗地区下石盒子组致密砂岩储层孔隙结构及可动流体特征[J]. 地质科技通报, 2023, 42(5): 94-102. doi: 10.19509/j.cnki.dzkq.2022.0134
He Yun, Wang Ruifei, Zhang Zhanyang, Wang Ruyue, Yin Shuai, He Weiling, Chen Ruina, Xiao Xue. Pore structure and movable fluid characteristics of tight sandstone reservoirs in the Lower Shihezi Formation in the Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 94-102. doi: 10.19509/j.cnki.dzkq.2022.0134
Citation: He Yun, Wang Ruifei, Zhang Zhanyang, Wang Ruyue, Yin Shuai, He Weiling, Chen Ruina, Xiao Xue. Pore structure and movable fluid characteristics of tight sandstone reservoirs in the Lower Shihezi Formation in the Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 94-102. doi: 10.19509/j.cnki.dzkq.2022.0134

鄂尔多斯盆地杭锦旗地区下石盒子组致密砂岩储层孔隙结构及可动流体特征

doi: 10.19509/j.cnki.dzkq.2022.0134
基金项目: 

陕西省重点研发计划 重点产业创新链(群): 2022ZDLSF07-04

国家自然科学基金项目 51974253

陕西省教育厅重点项目 18JS084

陕西省高校科协青年人才托举计划 20180703

详细信息
    作者简介:

    何云(1982-), 男, 高级工程师, 主要从事油气生产技术管理工作。E-mail: 376254397@qq.com

    通讯作者:

    王濡岳(1990-), 男, 高级工程师, 主要从事非常规油气地质与油气勘探规划研究。E-mail: wry1990@vip.qq.com

  • 中图分类号: P130.2+1

Pore structure and movable fluid characteristics of tight sandstone reservoirs in the Lower Shihezi Formation in the Hangjinqi area, Ordos Basin

  • 摘要:

    核磁共振(NMR)及CT扫描技术对致密砂岩储层评价正发挥越来越重要的作用。以杭锦旗地区下石盒子组盒1段致密砂岩储层为例, 基于NMR及CT扫描系统探讨了致密砂岩中不同类型孔隙的响应特征及流体识别能力。结果表明, 测试样品的孔隙度主要分布在1.7%~10%, 气测渗透率主要分布在0.1×10-3~1.4×10-3 μm2, T2弛豫时间截止值主要分布在1~14 ms, 平均值为6.11 ms, 属于典型的低孔、低渗型致密砂岩储层。根据离心前饱和分量T2弛豫时间曲线, 盒1段储层孔隙类型为双峰型(左峰为主, 右峰不明显), 包括3个亚类: 微孔-小孔型、小孔-中孔型、微孔-小孔-中孔型, 所对应的T2弛豫时间区间分别为0.1~10, 1~100, 0.1~100 ms。三维CT扫描结果显示, 小孔-中孔型储层的物性特征最好, 其次为微孔-小孔-中孔型储层, 而微孔-小孔型储层的物性相对较差。T2截止值与样品可动流体含量负相关。盒1段可动流体孔隙度与渗透率具有良好的正相关性, 反映可动流体含量受储层渗透率与喉道显著影响。盒1段致密砂岩储层中可动水饱和度主要分布在4%~9%, 平均值为5.8%。开发实践显示, 盒1段原始可动水饱和度较低, 具有较大开发潜力, 从侧面证实了NMP和CT扫描技术结果的准确性。

     

  • 图 1  NMR测试样品的渗透率与孔隙度的关系

    Figure 1.  Relationship between permeability and porosity of NMR test samples

    图 2  基于离心前饱和分量核磁共振曲线的致密砂岩储层孔隙结构类型划分

    a. 3号样品, 2 572.29 m, 微孔-小孔型; b. 6号样品, 3 368.12 m, 小孔-中孔型; c. 8号样品, 3 223.36 m, 微孔-小孔-中孔型

    Figure 2.  Classification of pore structure types in tight sandstone reservoirs based on NMR curves of saturation components before centrifugation

    图 3  研究区盒1段致密砂岩储层6号样品三维CT扫描结果

    a~b.样品逐层扫描;c.样品原始切片;d.阈值分割后提取的孔隙分布(蓝色);e.三维孔隙分布;f.样品内部含铁矿物三维分布

    Figure 3.  3D CT scan results of Sample No.6 of tight sandstone reservoirs in the He 1 Member in the study area

    图 4  基于三维CT扫描的致密砂岩样品的孔喉分布特征

    a.3号样品,微孔-小孔型,孔隙度4.2%,渗透率0.26×10-3 μm2;b.6号样品,小孔-中孔型,孔隙度7.3%,渗透率0.71×10-3 μm2;c.8号样品,微孔-小孔-中孔型,孔隙度6.7%,渗透率0.52×10-3 μm2

    Figure 4.  Pore throat distribution characteristics of tight sandstone samples based on 3D CT scanning

    图 5  基于NMR及CT测试的储层可动流体孔隙度与孔喉参数的关系

    Figure 5.  Relationship between porosity and pore throat parameters of reservoir movable fluid based on NMR and CT measurements

    图 6  利用NMR曲线识别T2截止值示意图

    Figure 6.  Schematic diagram of identifying the T2 cut-off value using NMR curves

    图 7  研究区盒1段致密砂岩样品T2截止值、物性参数及流体参数的分布特征

    Figure 7.  Distribution characteristics of the T2 cutoff value, physical property parameters and fluid parameters of tight sandstone samples in the He 1 Member of the study area

    图 8  可动流体孔隙度与渗透率的关系

    Figure 8.  Relationship between the movable fluid porosity and rock permeability

    图 9  致密砂岩样品可动水饱和度(a)、束缚水饱和度(b)与孔隙度的关系

    Figure 9.  Relationship between movable water saturation (a), irreducible water saturation (b) and porosity of tight sandstone samples

    表  1  样品基本信息

    Table  1.   Basic information of the samples

    样品编号 井号 深度/m 氦气孔隙度/% 气测渗透率/10-3 μm2 岩性
    1 J119 3 372.44 7.0 0.69 中粗砂岩
    2 J136 3 562.71 1.7 0.08 中砂岩
    3 J120 2 572.29 4.2 0.26 中砂岩
    4 J137 3 422.38 7.9 0.56 中砂岩
    5 J137 3 422.93 6.2 0.26 粗砂岩
    6 J119 3 368.12 7.3 0.71 粗砂岩
    7 J137 3 424.08 9.1 1.13 中粗砂岩
    8 J144 3 223.36 6.7 0.52 细砂岩
    9 J137 3 474.10 9.2 1.19 中砂岩
    10 J51 2 732.94 10.1 0.61 中砂岩
    下载: 导出CSV
  • [1] Belikov B P, Aleksandrov K S, Ryzhova T V. Elastic constants of rock-forming minerals[M]. [S. l. ]: Nauka, 1970: 67-69.
    [2] Daigle H, Dugan B. Extending NMR data for permeability estimation in fine grained sediments[J]. Marine and Petroleum Geology, 2009, 26(8): 1419-1427. doi: 10.1016/j.marpetgeo.2009.02.008
    [3] Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. doi: 10.1306/10240808059
    [4] Yang Q S, Carlos T V. Joint interpretation and uncertainty analysis of petrophysical properties in unconventional shale reservoirs[J]. Interpretation, 2015, 3(1): 33-49.
    [5] Menendez B, Zhu W L, Wong T F. Micromechanics of brittle faulting andcataclastic flow in Berea sandstone[J]. Journal of Structural Geology, 1996, 18(1): 1-16. doi: 10.1016/0191-8141(95)00076-P
    [6] Wyllie M RJ, Spangler M B. Application of electrical resistivity measurements to problem of fluid flow in porous media[J]. AAPG Bulletin, 1952, 36: 359-403.
    [7] Carman P C. Fluid flow through granular beds[J]. Transactions of the Institution of Chemical Engineers, 1937, 15: 150-166.
    [8] 刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报, 2021, 40(1): 57-68. doi: 10.19509/j.cnki.dzkq.2021.0102

    Liu K, Shi W Z, Wang R, et al. Pore structure fractal characteristics and its relationship with reservoir properties of the First Member of Lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0102
    [9] Keehm Y T, Mukerji, Nur A. Computational rock physics at the pore scale: Transport properties and diagenesis in realistic pore geometries[J]. The Leading Edge, 2001, 20: 180-183. doi: 10.1190/1.1438904
    [10] 高树生, 胡志明, 刘华勋, 等. 不同岩性储层的微观孔隙特征[J]. 石油学报, 2016, 37(2): 248-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602012.htm

    Gao S S, Hu Z M, Liu H X, et al. Microscopic pore characteristics of diferent lithological reservoirs[J]. Acta Petrolei Sinica, 2016, 37(2): 248-256 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602012.htm
    [11] Coates G R, Xiao L, Prammer M G. NMR logging principles and applications[M]. [S. l. ]: Halliburton Energy Services Publication, 1999: 104-106.
    [12] Reza R, Ali S, Ben C. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 92-99.
    [13] Zhou S D, Liu D M, Cai Y D, et al. Fractal characterization of pore-fracture in low-rank coals using a low-field NMR relaxation method[J]. Fuel, 2016, 181: 218-226. doi: 10.1016/j.fuel.2016.04.119
    [14] 尹相东, 蒋恕, 吴鹏, 等. 致密砂岩酸性和碱性成岩环境特征及对储层物性的控制: 以鄂尔多斯盆地临兴和神府地区为例[J]. 地质科技通报, 2021, 40(01): 142-151. doi: 10.19509/j.cnki.dzkq.2021.0109

    Yin X D, Jiang S, Wu P, et al. Features of the acid and alkaline diagenetic environment of tight sandstones and thecontrol of the reservoir physical properties: A case study of the Linxing and Shenfu district, eastern Ordos Basin[J]. Buletin of Geological Science and Technology, 2021, 40(1): 142-151 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0109
    [15] 支鑫, 熊伟, 高树生, 等. 苏里格致密砂岩气藏可动水饱和度分布[J]. 大庆石油地质与开发, 2015, 34(2): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201502016.htm

    Zhi X, Xiong W, Gao S S, et al. Distribution of the movable water saturation in Sulige tight gas reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(2): 86-89 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201502016.htm
    [16] 刘永利, 尤东华, 李海英, 等. 超深层碳酸盐岩层系硅质岩储层表征与评价: 以塔里木盆地塔深6井为例[J]. 石油与天然气地质, 2021, 42(3): 547-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103003.htm

    Liu Y L, You D H, Li H Y, et al. Characterization and evaluation of chert reservoirs in ultra-deep carbonate rock formations: A case study on Well TS 6 in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 547-556 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103003.htm
    [17] 董怀民, 孙建孟, 林振洲, 等. 基于CT扫描的天然气水合物储层微观孔隙结构定量表征及特征分析[J]. 中国石油大学学报: 自然科学版, 2018, 42(6): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201806005.htm

    Dong H M, Sun J M, Lin Z Z, et al. Quantitative characterization and characteristics analysis of microscopic pore structure in natural gas hydrate based on CT scanning[J]. Journal of China University of Petroleum: Edition of Natural Science, 2018, 42(6): 40-49 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201806005.htm
    [18] 苟启洋, 徐尚, 郝芳, 等. 纳米CT页岩孔隙结构表征方法: 以JY-1井为例[J]. 石油学报, 2018, 39(11): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201811005.htm

    Gou Q Y, Xu S, Hao F, et al. Characterization method of shale pore structure based on nano-CT: A case study of Well JY-1[J]. Acta Petrolei Sinica, 2018, 39(11): 1253-1261 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201811005.htm
    [19] 尹帅, 孙晓光, 邬忠虎, 等. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用[J]. 中南大学学报: 自然科学版, 2022, 53(9): 3724-3737. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202209033.htm

    Yin S, Sun X G, Wu Z H, et al. Coupling control of tectonic evolution and fractures on the Upper Paleozoic gas reservoirs in the northeastern margin of the Ordos Basin[J]. Journal of Central South University: Science and Technology, 2022, 53(9): 3724-3737(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202209033.htm
    [20] 尹帅, 邬忠虎, 吴晓明, 等. 鄂尔多斯盆地陇东洪德地区侏罗系延安组油藏富集规律研究[J]. 石油与天然气地质, 2022, 43(5): 1167-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205013.htm

    Yin S, Wu Z H, Wu X M, et al. Oil enrichment law of the Jurassic Yan'an Formation, Hongde block, Longdong area, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1167-1179(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205013.htm
    [21] 曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 1-12. doi: 10.19509/j.cnki.dzkq.2021.0022

    Zeng H B, Wang F R, Luo J, et al. Characterization of pore structure of inter salt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 1-12(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0022
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  626
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 录用日期:  2022-05-05
  • 修回日期:  2022-02-28

目录

    /

    返回文章
    返回