Characteristic analysis of deep water gravity flow sediments in Ch6-Ch7 Section of Yanchang Formation in the Binchang Block, southern Ordos Basin, China
-
摘要:
鄂尔多斯盆地南部彬长区块的延长组长6-长7段发育厚层无沉积构造的块状砂岩,具有良好的油气显示和开发效益,然而关于该套砂岩的形成机制尚不清晰。确定长6-长7段砂岩的沉积相及沉积模式,对于该套低渗砂岩储层"甜点"形成机制的理解,"甜点"分布模式的预测,以及后续勘探开发都具有重要的指导意义。对彬长区块36口取心井的长6-长7段1 024 m长的岩心进行了沉积学特征描述,结合粒度分析资料及地质制图分析,确定了该套厚层砂岩的沉积相及沉积模式。结果表明:鄂尔多斯盆地南部彬长区块的延长组长6-长7段砂岩共发育15种岩相和3种主要沉积微相类型,即:砂质碎屑流、浊积岩和震积滑塌岩微相,以及它们在空间上的3类组合关系。其深水重力流沉积模式可以概括为扇根(坡折带斜坡上半部分)的震积滑塌相-砂质碎屑流亚相(沉积组合)、扇中(斜坡中下部位-坡脚)的砂质碎屑流-浊积岩沉积亚相(沉积组合)和扇端(坡脚-盆底)浊积砂等亚相(沉积组合)。通过对彬长区块延长组长6-长7段发育的致密砂岩沉积特征的分析与讨论,确定了该厚层块状砂岩的主要沉积相及沉积微相的特征及分布,为致密砂岩储层的高效开发及"甜点"预测提供了科学依据与良好借鉴。
Abstract:Massive sandstone without sedimentary structure is developed in the Ch6-Ch7 Section of Yanchang Formation in the Binchang Block, Southern Ordos Basin, which has a good oil and gas show, good productivities and good exploration and development prospect. However, the formation mechanism of the sandstone is still in dispute. It is of great significance to determine the sedimentary facies and sedimentary model of the sandstone in Ch6-Ch7 Section in order to analyze the formation mechanism of sweet spot in the low permeability sandstone reservoirs, to predict the sweet spot distribution model and guide the subsequent exploration and development. In this paper, 15 lithofacies and 3 main types of sedimentary microfacies, namely, sandy debris flow, turbidite and seismite slump microfacies, have been identified by using a large amount of core sedimentary description data, grain size analysis data and geological mapping analysis, and these three kinds of sedimentary assemblies in space. The deep water gravity flow deposition model in the Ch6-Ch7 Section can be summarized as the sublacustrine fan model and can be divided into three subfacies or assemblies: the upper fan subfacies dominated by the assembly of seismite-slump and sandy debris flow, the mid-fan subfacies dominated by the assembly of the sand debris flow-turbidite microfacies and the lower-fan subfacies dominated by turbidite flow-basin plain microfacies assembly.
-
Key words:
- Ordos Basin /
- Binchang Block /
- Ch6-Ch7 section /
- sandy debris flow /
- gravity flow sediment
-
图 2 砂质碎屑流主要岩石相
a. 块状层理细砂岩(Sfm),JH8井,长7段,底部突变接触,滑动作用形成;b. 块状层理细砂岩(Sfm),JH9井,长6段,A为块状砂岩,B为砂岩底部的滑动剪切带;c~g.含(泥)砾细砂岩(Sfmfc),撕裂状的泥砾顺层分布在块状砂岩中;c.JH7井,长712小层;d. JH8井,长632小层;e, f.JH9井,长632小层;g.JH2井,长711小层;h.反递变细砂岩(Sfigb),JH9,长721小层,基质强度阻碍沉降而形成;i.似平行层理细砂岩(Sfpl),JH7,长722小层,A为砂质碎屑塑性层流沉积产物,B为流动分层产生的浊流沉积
Figure 2. Main lithofacies of sandy debris flow
图 13 彬长区块长711-长73小层湖底扇沉积微相剖面分布图(剖面位置见图 12)
Figure 13. Profile distribution map of sedimentary microfacies of sublacustrine fan in Ch711-Ch73 Member of the Binchang Block
表 1 彬长区块长6-长7段岩石相特征
Table 1. Lithofacies characteristics of Ch6-Ch7 Section of the Binchang Block
岩性 岩石相 代码 沉积特征 沉积解释 细砂岩 块状层理细砂岩相 Sfm 灰色、褐色,细粒,均质,块状,泥质含量低,砂质较纯。底部突变接触,或见滑动剪切构造,顶面突变接触或浊积成因的砂泥薄互层。含油性较好 砂质碎屑流(塑性流型、层流流体) 含泥砾细砂岩相 Sfmfc 灰色、灰褐色,块状,砂岩中上部含伸长状或浑圆状泥砾,漂浮顺层分布,含油性较好 反递变细砂岩 Sfigb 灰白色,下部为泥质含量较高的泥质细砂岩,致密,含油性较差,上部为块状细砂岩,泥质含量低,物性好,粒级明显呈反递变特征 似平行层理细砂岩 Sfpl 灰白,灰褐色,层理面隐约断续平行状,似平行层理 含撕裂泥砾细砂岩相 Sftmc 灰色,块状,位于块状砂岩底部,底部侵蚀接触,砂岩中含伸长状两端卷曲的撕裂泥砾,平行/紊乱分布,为浊流沉积产物 浊流 牛顿型流体 平行层理细砂岩相 Sfp 灰白,灰褐色,平行层理,薄砂泥互层中出现,鲍马序列中的B段 牵引流 递变层理细砂岩相 Sfgb 灰白色,层薄,小于20 cm,正递变,鲍马序列A段。底部可见槽模构造 浊流 负载构造细砂岩 Sfls 灰白色,砂岩底部发育负载、火焰状、球状、挤入、枕状、底劈构造、布丁构造、环形层构造。差异负载沉降、垂直应力剪切等作用形成 震积-液化-滑动-滑塌作用 液化构造细砂岩 Sfliq 灰白色,碟状构造,沙火山、液化泄水构造、液化卷曲构造、液化角砾、液化水压构造等。由地震滑塌过程中的液化作用形成 滑塌变形构造细砂岩相 Sfd 浅灰色、灰白色变形层理细砂岩,可见包卷变形层理构造和地震活动标志,如:微褶皱、微断层、液化卷曲构造等,为地震滑塌过程中变形作用的产物 粉砂岩 波状及透镜状层理粉砂岩相 Ssw 浅灰色、灰色,砂泥薄互层,厚度5~10 cm,波状及透镜状层理,鲍马序列C段 牵引流(底流) 水平纹理粉砂岩相 Sspl 灰色,浅灰色,水平纹理发育,鲍马序列D段 滑塌变形构造粉砂岩相 Ssd 灰黑色泥质粉砂岩,砂泥岩薄互层,可见包卷层理和微地震标志,为地震滑塌形成 滑塌作用 泥质岩 油页岩 Mosh 灰黑色,水平纹理发育。高GR、高电阻率、高声波和高中子、低密度 悬浮沉积 深灰色泥岩相 M 深灰色,块状,水平层理,含植物碎屑。鲍马序列E段 表 2 彬长区块长6-长7段沉积相、沉积组合(亚相)和沉积微相划分
Table 2. Division of sedimentary facies, sedimentary assemblages (subfacies) and sedimentary micro-facies in Ch6-Ch7 Section of the Binchang Block
沉积相 亚相/沉积组合 古地理位置 主要微相(代码) 斜坡-湖底扇 扇根的(震积滑塌相-砂质碎屑流沉积组合) 坡折带-斜坡上半部分 震积滑塌岩(SSLM)和砂质碎屑流(SDF)微相 扇中(砂质碎屑流-浊积岩沉积组合) 斜坡中下部位-坡脚 砂质碎屑流(SDF)、浊积砂(TBF) 扇端(浊积岩沉积组合) 坡脚-盆底 浊积砂(TBF) -
[1] Pettingill H S, Weimer P. Worldwide deepwater exploration and production: Past, present, and future[J]. The Leading Edge, 2002, 21(4): 371-376. doi: 10.1190/1.1471600 [2] 张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10): 1447-1477. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710001.htmZhang G C, Qu H J, Zhao C, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration[J]. Natural Gas Geoscience, 2017, 28(10): 1447-1477(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710001.htm [3] 张功成, 米立军, 屈红军, 等. 全球深水盆地群分布格局与油气特征[J]. 石油学报, 2011, 32(3): 369-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103000.htmZhang G C, Mi L J, Qu H J, et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics[J]. Acta Petrolei Sinica, 2011, 32(3): 369-378(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103000.htm [4] 操应长, 金杰华, 刘海宁, 等. 中国东部断陷湖盆深水重力流沉积及其油气地质意义[J]. 石油勘探与开发, 2021, 48(2): 247-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102003.htmCao Y C, Jin J H, Liu H N, et al. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China[J]. Petroleum Exploration and Development, 2021, 48(2): 247-257(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102003.htm [5] 张家强, 李士祥, 李宏伟, 等. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探: 以城页水平井区长73小层为例[J]. 石油学报, 2021, 42(5): 570-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105002.htmZhang J Q, Li S X, Li H W, et al. Gravity flow deposits in the distal lacustrine basin of the 7th reservoir group of Yanchang Formation and deepwater oil and gas exploration in Ordos Basin: A case study of Chang 73 sublayer of Chengye horizontal well region[J]. Acta Petrolei Sinica, 2021, 42(5): 570-587(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105002.htm [6] 秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1): 140-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801015.htmQin Y Q, Wan L K, Ji Z F, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39(1): 140-152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801015.htm [7] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127. doi: 10.1086/625710 [8] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962. [9] Normark W R. Growth patterns of deep-sea fans[J]. AAPG Bulletin, 1970, 54(11): 2170-2195. [10] Normark W R. Fan valleys, channels, and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments[J]. AAPG Bulletin, 1978, 62(6): 912-931. [11] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966. [12] Shanmugam G. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models: A critical perspective[J]. Marine and petroleum Geology, 2000, 17(2): 285-342. doi: 10.1016/S0264-8172(99)00011-2 [13] Shanmugam G, Zimbrick G. Sandy slump and sandy debris flow facies in the Pliocene and Pleistocene of the Gulf of Mexico: Implications for submarine fan models[C]//Anon. Proceedings of American Association of Petroleum Geologists International Congress and Exhibition, Caracas. Venezuela-Official Program A, 1996: 45. [14] Shanmugam G. Ten turbidite myths[J]. Earth-Science Reviews, 2002, 58(3/4): 311-341. [15] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[C]//Middleton G V, Bouma A H. Turbidites and deep sea sedimentation. [S. l. ]: Society Economic Paleontologists and Mineralogists Special Publication, 1973: 1-38. [16] Lowe D R. Sediment gravity flows: Their classification and some problems of application to natural flows and deposits[C]//Doyle L J, Pilkey O H. Geology of continental slopes. [S. l. ]: Society of Economic Paleontologists and Mineralogists Special Publication, 1979, 27: 75-82. [17] Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297 [18] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. doi: 10.1046/j.1365-3091.2001.00360.x [19] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnalflows: Initiation, behavior and related deposits: A review[J]. Marine and Petroleum Geology, 2003, 20(6/8): 861-882. [20] 孙国桐. 深水重力流沉积研究进展[J]. 地质科技情报, 2015, 34(3): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503005.htmSun G T. A review of deep-water gravity-flow deposition research[J]. Geological Science and Technology Information, 2015, 34(3): 30-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503005.htm [21] Mutti E. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South-central Pyrenees, Spain)[J]. Sedimentology, 1977, 24(1): 107-131. doi: 10.1111/j.1365-3091.1977.tb00122.x [22] 夏青松, 田景春. 鄂尔多斯盆地南部上三叠统延长组震积岩的发现及地质意义[J]. 沉积学报, 2007, 25(2): 246-252. doi: 10.3969/j.issn.1000-0550.2007.02.012Xia Q S, Tian J C. Characteristics and geological significance of seismites of the Yanchang Formation, Upper Triassic, Ordos Basin[J]. Acta Sedimentologica Sinica, 2007, 25(2): 246-252(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2007.02.012 [23] 赵俊兴, 吕强, 李凤杰, 等. 鄂尔多斯盆地南部延长组长6时期物源状况分析[J]. 沉积学报, 2008, 26(4): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200804011.htmZhao J X, Lü Q, Li F J, et al. Sediment provenance analysis of the Chang 6 oil-bearing of Yanchang Formation in the south of Ordos Basin[J]. Acta Sedimentologica Sinica, 2008, 26(4): 610-616(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200804011.htm [24] 李士春, 冯朝荣, 殷世江. 鄂尔多斯盆地南部中生界延长组沉积体系与油气富集[J]. 岩性油气藏, 2010, 22(2): 79-83. doi: 10.3969/j.issn.1673-8926.2010.02.014Li S C, Feng C R, Yin S J. Sedimentary system and hydrocarbon enrichment of Yanchang Formation in southern Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(2): 79-83(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2010.02.014 [25] 陈飞, 樊太亮, 高志前, 等. 鄂尔多斯盆地南部上三叠统延长组物源方向与沉积体系分析[J]. 西安石油大学学报: 自然科学版, 2009, 24(6): 24-28. doi: 10.3969/j.issn.1673-064X.2009.06.007Chen F, Fan T L, Gao Z Q, et al. Analysis of the provenance direction and the depositional systems of Yanchang Formation of Upper Triassic in the southern Ordos Basin[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2009, 24(6): 24-28(in Chinese with English abstract). doi: 10.3969/j.issn.1673-064X.2009.06.007 [26] 丁晓琪, 张哨楠, 熊迪, 等. 鄂尔多斯盆地西南缘延长组湖盆底形演化研究[J]. 西南石油大学学报, 2011, 33(6): 1-6.Ding X Q, Zhang S N, Xiong D, et al. Study on the evolution of lake basin bottom shape of the Extension Group in the southwest margin of Ordos Basin[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2011, 33(6): 1-6(in Chinese with English abstract). [27] 王振, 张元福, 张娜, 等. 鄂尔多斯盆地南部旬邑地区延长组长7段深水牵引流的发现及其意义[J]. 地质科技情报, 2018, 37(2): 9-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802002.htmWang Z, Zhang Y F, Zhang N, et al. Discovery and significance of deep-water tractive current deposits in Member 7 of Yanchang Formation in Xunyi area of southern Ordos Basin[J]. Geological Science and Technology Information, 2018, 37(2): 9-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802002.htm [28] 邹才能, 赵政璋, 杨华, 等. 陆相湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例[J]. 沉积学报, 2009, 27(6): 1068-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906007.htmZou C N, Zhao Z Z, Yang H, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1068-1075(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906007.htm [29] 李相博, 刘化清, 陈启林, 等. 大型坳陷湖盆沉积坡折带特征及其对砂体与油气的控制作用: 以鄂尔多斯盆地三叠系延长组为例[J]. 沉积学报, 2010, 28(4): 718-731. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201004008.htmLi X B, Liu H Q, Chen Q L, et al. Characteristics of slope break belt in large depression lacustrine basin and its controlling effect on sandbody and petroleum: Taking the Triassic Yanchang Formation in the Ordos Basin as an example[J]. Acta Sedimentologica Sinica, 2010, 28(4): 718-731(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201004008.htm [30] 李相博, 陈启林, 刘化清, 等. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201003005.htmLi X B, Chen Q L, Liu H Q, et al. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201003005.htm [31] 袁珍, 李文厚, 范萌萌, 等. 深水块状砂岩沉积特征及其成因机制探讨: 以鄂尔多斯盆地东南缘上三叠统长6油层组为例[J]. 地质科技情报, 2011, 30(4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104007.htmYuan Z, Li W H, Fan M M, et al. Genetic mechanism and sedimentary features of deep water massive sandstone: A case study of the Upper Triassic sandstones of Chang 6 Formation in the southeast of Ordos Basin[J]. Geological Science and Technology Information, 2011, 30(4): 43-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104007.htm [32] 杨仁超, 金之钧, 孙冬胜, 等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 海相油气地质, 2016, 21(2): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501002.htmYang R C, Jin Z J, Sun D S, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Marine Origin Petroleum Geology, 2016, 21(2): 47-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501002.htm [33] 唐武, 王英民, 仲米虹, 等. 异重流研究进展综述[J]. 海相油气地质, 2016, 21(2): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201602010.htmTang W, Wang Y M, Zhong M H, et al. Review of hyperpycnal flow[J]. Marine Origin Petroleum Geology, 2016, 21(2): 47-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201602010.htm [34] 孙福宁, 杨仁超, 李冬月. 异重流沉积研究进展[J]. 沉积学报, 2016, 34(3): 452-462. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603003.htmSun F N, Yang R C, Li D Y. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603003.htm [35] 潘树新, 刘化清, Zavala C, 等. 大型坳陷湖盆异重流成因的水道湖底扇系统: 以松辽盆地白垩系嫩江组一段为例[J]. 石油勘探与开发, 2017, 44(6): 860-870. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706004.htmPan S X, Liu H Q, Zavala C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(6): 860-870(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706004.htm [36] 周立宏, 陈长伟, 韩国猛, 等. 断陷湖盆异重流沉积特征与分布模式: 以歧口凹陷板桥斜坡沙一下亚段为例[J]. 中国石油勘探, 2018, 23(4): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804003.htmZhou L H, Chen C W, Han G M, et al. Sedimentary characteristics and distribution patterns of hyperpycnal flow in rifted lacustrine basins: A case study on Lower Es1 of Banqiao slope in Qikou Sag[J]. China Petroleum Exploration, 2018, 23(4): 11-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804003.htm [37] 张国栋, 鲜本忠, 晁储志, 等. 鄂尔多斯盆地三水河剖面上三叠统块状砂岩的异重流成因: 来自岩石结构的证据[J]. 沉积学报, 2019, 37(5): 934-943. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905005.htmZhang G D, Xian B Z, Chao C Z, et al. Flood-generated massive sandstones of the Sanshuihe outcrop in the Triassic Ordos Basin: Evidence from sedimentary textural characteristics[J]. Acta Sedimentologica Sinica, 2019, 37(5): 934-943(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905005.htm [38] 王家豪, 王华, 肖敦清, 等. 陆相断陷湖盆异重流与滑塌型重力流沉积辨别[J]. 石油学报, 2020, 41(4): 392-411. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004004.htmWang J H, Wang H, Xiao D Q, et al. Differentiation between hyperpycnal flow deposition and slump-induced gravity flow deposition in terrestrial rifted lacustrine basin[J]. Acta Petrolei Sinica, 2020, 41(4): 392-411(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004004.htm [39] 陈五泉, 陈凤陵. 鄂尔多斯盆地渭北地区延长组沉积特征及石油勘探方向[J]. 石油地质与工程, 2008, 22(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN200804006.htmChen W Q, Chen F L. Sedimentary characteristics and petroleum exploration target of Yanchang Formation of Triassic at Weibei area, Ordos Basin[J]. Petroleum Geology and Engineering, 2008, 22(4): 10-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN200804006.htm [40] 吕强, 赵俊兴, 陈洪德, 等. 鄂尔多斯盆地南部中生界延长组物源与盆地底形分析[J]. 成都理工大学学报: 自然科学版, 2008, 35(6): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200806002.htmLü Q, Zhao J X, Chen H D, et al. Analysis of the provenance and basin bottom shape of Yanchang Epoch of Mesozoic in Ordos Basin, China[J]. Journal of Chengdu University of Technology: Natural Science Edition, 2008, 35(6): 610-616(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200806002.htm [41] 庞军刚, 卢涛, 国吉安, 等. 鄂尔多斯盆地延长期原型湖盆恢复及中部砂体成因[J]. 岩性油气藏, 2012, 24(4): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201204016.htmPang J G, Lu T, Guo J A, et al. Reconstitution of original lake basin during Triassic Yanchang stage and sand body genesis in the center of Ordos Basin[J]. Lithologic Reservoirs, 2012, 24(4): 56-63(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201204016.htm [42] 刘化清, 李相博, 完颜容, 等. 鄂尔多斯盆地长8油层组古地理环境与沉积特征[J]. 沉积学报, 2011, 29(6): 1086-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201106009.htmLiu H Q, Li X B, Wanyan R, et al. Palaeogeographic and sedimentological characteristics of the Triassic Chang 8, Ordos Basin, China[J]. Acta Sedimentologica Sinica, 2011, 29(6): 1086-1095(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201106009.htm [43] Zavala C, Ponce J, Drittanti D, et al. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation(Cretaceous) of west-central Argentina[J]. Journal of Sedimentary Research, 2006, 76(1): 41-59. [44] Yang R C, Jin Z J, A.J. Van Loon T, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117. [45] Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162. [46] 付鑫, 杜晓峰, 官大勇, 等. 地震沉积学在河流-浅水三角洲沉积相研究中的应用: 以渤海海域蓬莱A构造区馆陶组为例[J]. 地质科技通报, 2021, 40(3): 96-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103011.htmFu X, Du X F, Guan D Y, et al. Application of seismic sedimentology in reservoir prediction in fluvial to shallow water delta facies: A case study in Guantao Formation from the Penglai A structure area in Bohai Bay[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 96-108(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103011.htm [47] 李安琪, 叶绮, 王真真, 等. 琼东南盆地陵水凹陷北部梅山组砂质碎屑流沉积特征及油气地质意义[J]. 地质科技通报, 2021, 40(1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101011.htmLi A Q, Ye Q, Wang Z Z, et al. Sedimentary characteristics and significance in hydrocarbon exploration of sandy debris flow in Meishan Formation of the northern Lingshui Sag, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 110-118(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202101011.htm [48] 岳佳恒, 黄传炎, 曹兰柱, 等. 巴音都兰凹陷巴66扇体沉积特征及控制因素[J]. 地质科技通报, 2021, 40(2): 88-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202102011.htmYue J H, Huang C Y, Cao L Z, et al. Sedimentary characteristics and controlling factors of the Ba 66 fan in Bayindulan Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 88-98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202102011.htm